41 research outputs found

    Isolated elliptical galaxies in the local Universe

    Get PDF
    We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. We study physical properties of ellipticals such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyze the blue star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT. Among the isolated ellipticals ~ 20% are blue, 8% are star forming, and ~ 10% are recently quenched, while among the Coma ellipticals ~ 8% are blue and just <= 1% are star forming or recently quenched. There are four isolated galaxies (~ 4.5%) that are blue and star forming at the same time. These galaxies, with masses between 7 x 10^9 and 2 x 10^10 h-2 M_sun, are also the youngest galaxies with light-weighted stellar ages <= 1 Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only < 5% of their present-day mass, is due to star formation in the last 1 Gyr. The processes of morphological transformation and quenching seem to be in general independent of environment since most of elliptical galaxies are 'red and dead', although the transition to the red sequence should be faster for isolated ellipticals. In some cases, the isolated environment seems to propitiate the rejuvenation of ellipticals by recent (< 1 Gyr) cold gas accretion.Comment: 23 pages, 15 figures (16 pages and 9 figures without appendices). A&A, in pres

    Remasking of Candida albicans β-Glucan in Response to Environmental pH Is Regulated by Quorum Sensing

    Get PDF
    Candida albicans is a commensal yeast of the human gut which is tolerated by the immune system but has the potential to become an opportunistic pathogen. One way in which C. albicans achieves this duality is through concealing or exposing cell wall pathogen-associated molecular patterns (PAMPs) in response to host-derived environment cues (pH, hypoxia, and lactate). This cell wall remodeling allows C. albicans to evade or hyperactivate the host’s innate immune responses, leading to disease. Previously, we showed that adaptation of C. albicans to acidic environments, conditions encountered during colonization of the female reproductive tract, induces significant cell wall remodeling resulting in the exposure of two key fungal PAMPs (β-glucan and chitin). Here, we report that this pH-dependent cell wall remodeling is time dependent, with the initial change in pH driving cell wall unmasking, which is then remasked at later time points. Remasking of β-glucan was mediated via the cell density-dependent fungal quorum sensing molecule farnesol, while chitin remasking was mediated via a small, heat-stable, nonproteinaceous secreted molecule(s). Transcript profiling identified a core set of 42 genes significantly regulated by pH over time and identified the transcription factor Efg1 as a regulator of chitin exposure through regulation of CHT2. This dynamic cell wall remodeling influenced innate immune recognition of C. albicans, suggesting that during infection, C. albicans can manipulate the host innate immune responses

    Nuclear Activity In Isolated Galaxies

    Full text link
    We present a spectroscopic study of the incidence of AGN nuclear activity in two samples of isolated galaxies (Karachentseva, V.E. & Varela, J.). Our results show that the incidence of non-thermal nuclear activity is about 43% and 31% for galaxies with emission lines and for the total sample 40% and 27% respectively. For the first time we have a large number of bona-fide isolated galaxies (513 objects), with statistically significant number of all types. We find a clear relation between bulge mass and the incidence of nuclear activity in the sample with emission lines. This relation becomes flatter when we take into account the complete sample with no emission line galaxies. A large fraction (~70%) of elliptical galaxies or early type spirals have an active galactic nucleus and ~70% of them are LINERs. Only 3% of the AGN show the presence of broad lines (a not a single one can be classified as type 1 AGN). This is a remarkable result which is completely at odds with the unified model even if we consider warped or clumpy tori. Finally, we interpret the large fraction of AGN in isolated galaxies as the result of secular evolution of their supermasive black holes.Comment: 7 figures, 7 table

    Awareness of Diagnosis in Persons with Early-Stage Alzheimer's Disease : An Observational Study in Spain

    Get PDF
    Limited information is available on people's experiences of living with Alzheimer's disease (AD) at earlier stages. This study assessed awareness of diagnosis among people with early-stage AD and its impact on different person-centered outcome measures. We conducted an observational, cross-sectional study in 21 memory clinics in Spain. Persons aged 50-90 years, diagnosed with prodromal or mild AD (NIA/AA criteria), a Mini Mental State Examination (MMSE) score ≥ 22, and a Clinical Dementia Rating-Global score (CDR-GS) of 0.5 or 1.0 were recruited. The Representations and Adjustment to Dementia Index (RADIX) was used to assess participants' beliefs about their condition and its consequences. A total of 149 persons with early-stage AD were studied. Mean (SD) age was 72.3 (7.0) years and 50.3% were female. Mean duration of AD was 1.4 (1.8) years. Mean MMSE score was 24.6 (2.1) and 87.2% had a CDR-GS score of 0.5. Most participants (n = 84, 57.5%) used a descriptive term related to specific AD symptoms (e.g., memory difficulties) when asked what they called their condition. Participants aware of their diagnosis using the term AD (n = 66, 45.2%) were younger, had more depressive symptoms, and poorer life satisfaction and quality of life compared to those without awareness of their specific diagnosis. Practical and emotional consequences RADIX scores showed a significant negative correlation with Quality of Life in Alzheimer's Disease score (rho = − 0.389 and − 0.413, respectively; p < 0.0001). Years of education was the only predictor of awareness of AD diagnosis [OR = 1.04 (95% CI 1.00-1.08); p = 0.029]. Awareness of diagnosis was a common phenomenon in persons with early-stage AD negatively impacting their quality of life. Understanding illness representations in earlier stages may facilitate implementing optimized care that supports improved quality of life and well-being

    Medical help-seeking intentions among patients with early Alzheimer’s disease

    Get PDF
    BackgroundLimited information is available on the active process of seeking medical help in patients with Alzheimer’s disease (AD) at early stages. The aim of this study was to assess the phenomenon of medical help-seeking in early AD and to identify associated factors.MethodsA multicenter, non-interventional study was conducted including patients of 50–90 years of age with prodromal or mild AD (National Institute on Aging/Alzheimer’s Association criteria), a Mini-Mental State Examination (MMSE) score ≥ 22, and a Clinical Dementia Rating-Global score (CDR-GS) of 0.5–1.0. A multivariate logistic regression analysis was conducted.ResultsA total of 149 patients were included. Mean age (SD) was 72.3 (7.0) years, 50.3% were female, and 87.2% had a CDR-GS score of 0.5. Mean disease duration was 1.4 (1.8) years. Ninety-four (63.1%) patients sought medical help, mostly from neurologists. Patients with help-seeking intentions were mostly female (60.6%) with a CDR-GS score of 0.5 (91.5%) and had a greater awareness of diagnosis, poorer quality of life, more depressive symptoms, and a more severe perception of their condition than their counterparts. Lack of help-seeking intentions was associated with male sex (p = 0.003), fewer years of education (p = 0.005), a low awareness of diagnosis (p = 0.005), and a low emotional consequence of the condition (p = 0.016).ConclusionUnderstanding the phenomenon of active medical help-seeking may facilitate the design of specific strategies to improve the detection of cognitive impairment, especially in patients with a lower level of educational attainment and poor awareness of their condition

    Evolution of DNA Binding Preferences in a Family of Eukaryotic Transcription Regulators

    No full text
    Regulation of gene expression by the control of transcription is essential for any cell to adapt to the environment and survive. Transcription regulators, i.e. sequence-specific DNA binding proteins that regulate gene expression, are central elements within the gene networks of most organisms. Transcription regulators are grouped into distinct families based on structural features that determine, to a large extent, the DNA sequence(s) that they can recognise and bind. Less is known, however, about how the DNA binding preferences can diversify within transcription regulator families during evolutionary timescales, and how such diversification can affect the biology of the organism. In this dissertation I study the SREBP (sterol regulatory element binding protein) family of transcriptional regulators in yeasts, and in Candida albicans in particular, as an experimental system to address these questions. The SREBPs are conserved from fungi to humans and represent a subgroup of basic helix-loop-helix DNA binding proteins. Early chromatin immunoprecipitation experiments with SREBPs from humans and yeasts showed that these proteins bound in vivo to the canonical DNA sequence, termed E-box, most basic helix-loop-helix proteins bind to. By contrast, most recent analysis carried out with less-studied fungal SREBPs revealed a non-canonical DNA motif to be the most overrepresented sequence in the bound regions. This study aims to establish the intrinsic DNA binding preferences of key branches of this family and to determine how the divergence in DNA binding affinities originated. To this end, I combined phylogenetic and ancestral reconstruction with extensive biochemical characterisation of key SREBP proteins. The results indicated that while the most-studied SREBPs (in mammals) indeed show preference for the E-box, a second branch of the family preferentially binds the non-E-box, and a third one is able to bind both sequences with similar affinity. The preference for one or the other DNA sequence is an intrinsic property of each protein because their purified DNA binding domain was sufficient to recapitulate their in vivo binding preference. The ancestor that gave rise to these two different types of SREBPs (the branch that binds E-box and the one that binds non-E-box DNA) appears to be a protein with a broader DNA binding capability that had a slight preference for the non-canonical motif. Thus, the results imply these two branches originated by either enhancing the original ancestral preference for non-E-box or tilting it towards the E-box DNA and flipping the preference for this sequence. The main function associated with members of the SREBP family in most eukaryotes is the control of lipid biosynthesis. I have further studied the function of these proteins in the lineage that encompasses the human associated yeast C. albicans. Strikingly, the three SREBPs present in the fungus’ genome contribute to the colonisation of the mammalian gut by regulating cellular processes unrelated to lipid metabolism. Here I describe that two of the three C. albicans SREBPs form a regulatory cascade that regulates morphology and cell wall modifications under anaerobic conditions, whereas the third SREBP has been shown to be involved in the regulation of glycolysis genes. Therefore, I posit that the described diversification in DNA binding specificity in these proteins and the concomitant expansion of targets of regulation were key in enabling this fungal lineage to associate with animals

    Evolutionäre Entwicklung der Bindeaffinität an bestimmte DNA Sequenzen in einer Familie von eukaryotischen Transkriptionsfaktoren

    No full text
    Regulation of gene expression by the control of transcription is essential for any cell to adapt to the environment and survive. Transcription regulators, i.e. sequence-specific DNA binding proteins that regulate gene expression, are central elements within the gene networks of most organisms. Transcription regulators are grouped into distinct families based on structural features that determine, to a large extent, the DNA sequence(s) that they can recognise and bind. Less is known, however, about how the DNA binding preferences can diversify within transcription regulator families during evolutionary timescales, and how such diversification can affect the biology of the organism. In this dissertation I study the SREBP (sterol regulatory element binding protein) family of transcriptional regulators in yeasts, and in Candida albicans in particular, as an experimental system to address these questions. The SREBPs are conserved from fungi to humans and represent a subgroup of basic helix-loop-helix DNA binding proteins. Early chromatin immunoprecipitation experiments with SREBPs from humans and yeasts showed that these proteins bound in vivo to the canonical DNA sequence, termed E-box, most basic helix-loop-helix proteins bind to. By contrast, most recent analysis carried out with less-studied fungal SREBPs revealed a non-canonical DNA motif to be the most overrepresented sequence in the bound regions. This study aims to establish the intrinsic DNA binding preferences of key branches of this family and to determine how the divergence in DNA binding affinities originated. To this end, I combined phylogenetic and ancestral reconstruction with extensive biochemical characterisation of key SREBP proteins. The results indicated that while the most-studied SREBPs (in mammals) indeed show preference for the E-box, a second branch of the family preferentially binds the non-E-box, and a third one is able to bind both sequences with similar affinity. The preference for one or the other DNA sequence is an intrinsic property of each protein because their purified DNA binding domain was sufficient to recapitulate their in vivo binding preference. The ancestor that gave rise to these two different types of SREBPs (the branch that binds E-box and the one that binds non-E-box DNA) appears to be a protein with a broader DNA binding capability that had a slight preference for the non-canonical motif. Thus, the results imply these two branches originated by either enhancing the original ancestral preference for non-E-box or tilting it towards the E-box DNA and flipping the preference for this sequence. The main function associated with members of the SREBP family in most eukaryotes is the control of lipid biosynthesis. I have further studied the function of these proteins in the lineage that encompasses the human associated yeast C. albicans. Strikingly, the three SREBPs present in the fungus’ genome contribute to the colonisation of the mammalian gut by regulating cellular processes unrelated to lipid metabolism. Here I describe that two of the three C. albicans SREBPs form a regulatory cascade that regulates morphology and cell wall modifications under anaerobic conditions, whereas the third SREBP has been shown to be involved in the regulation of glycolysis genes. Therefore, I posit that the described diversification in DNA binding specificity in these proteins and the concomitant expansion of targets of regulation were key in enabling this fungal lineage to associate with animals.Für jede Zelle ist es essenziell die Transkription über die Genexpression zu regulieren, um sich an unterschiedliche Lebensbedingungen anzupassen. Regulatoren der Transkription, zum Beispiel sequenzspezifische DNA-binde Proteine, sind ein zentrales Element des Genregulationsnetzwerks in den meisten Organismen. Auf Grund ihres Aufbaus sowie der daraus resultierenden spezifischen Eigenschaften DNA zu binden, werden diese Regulatoren in unterschiedliche Familien unterteilt. Bisher ist wenig darüber bekannt, wie unterschiedlich die DNA Sequenzen sein können, welche von einer Familie von Transkriptionsregulatoren gebunden werden, wie sich diese Diversität der Bindung in der Evolution über die Zeit verändert hat und ob diese unterschiedlichen Bindeaffinitäten die Biologie eines Organismus beeinflussen. In dieser Dissertation befasse ich mich mit der Transkriptionsregulator Familie der SREBPs (sterol regulatory element binding protein) in Hefen, als Modelorganismus diente dabei Candida albicans. Die Familie der SREBPs ist vom Pilz zu den Menschen genetisch weitestgehend konserviert und repräsentiert eine Unterfamilie der Helix-loop-helix DNA-binde Proteine. Erste Chromatin-Immunpräzipitation Experimente der SREBPs in Menschen und Hefen zeigen in vivo eine Bindung an eine kanonische DNA Sequenz genannt E-box, welche von den meisten der Helix-loop-helix Proteine gebunden wird. Im Gegensatz zeigen neuere Analysen, welche mit weniger bekannten SREBPs aus Pilzen durchgeführt wurden, dass hauptsächlich nicht-kanonische DNA Sequenzen gebunden werden. Diese Arbeit versucht die Präferenzen, mit welchen einige der wichtigsten Mitglieder der Familie der SREBPs an bestimmte DNA Sequenzen binden aufzudecken und heraus zu finden wie es innerhalb dieser Gruppe zu unterschiedlichen Bindungsaffinitäten kam. Dafür wurden phylogenetische Rekonstruktionsanalysen und aufwändige biochemische Charakterisierungen einiger der Proteine der SREBP Familie durchgeführt. Die Ergebnisse zeigen, dass die meisten der bisher charakterisierten SREBPs (in Säugetieren) es vorziehen an die E-box Sequenz zu binden, ein anderer Zweig des SREBP Familienstammbaums bevorzugt hingegen die non-E-box Sequenz, ein dritter Zweig des Stammbaums ist in der Lage beide Sequenzen mit gleicher Affinität zu binden. Das Bevorzugen einer der beiden DNA Sequenzen ist eine natürliche Eigenschaft des jeweiligen Proteins, da in Experimenten die isolierte DNA-binde Domäne der Proteine ausreichend war, um die in vivo Bindepräferenzen zu replizieren. Der Ursprung dieser beiden Gruppen (der E-box bindenden Gruppe und der Gruppe die non-E-box Sequenzen bindet) liegt wahrscheinlich in einem Protein, welches beide Sequenzen binden konnte, mit einem Vorzug für die nicht-kanonische Sequenz. Dies impliziert, dass die Gruppen entstanden sind indem sich entweder eine Präferenz des Vorgängerproteins für die nicht-kanonische Sequenz durchgesetzt hat oder, dass sich eine Präferenz für die E-box bindende Sequenz durchgesetzt hat und somit die Affinität dahingehend verschoben wurde. Die Hauptfunktion der meisten Proteine der SREBP Familie in Eukaryoten ist die Kontrolle der Lipid Biosynthese. In meiner Arbeit habe ich mich auf die Erforschung der SREBPs in einer Gruppe von Organismen zugewandt, die auch den mit dem Menschen assoziierten Hefepilz Candida albicans umfasst. Erstaunlicherweise beeinflussen die drei SREBPs die im Candida albicans Genom zu finden sind, die Kolonisierung des Säugetierdarms, jedoch nicht durch die Kontrolle der Lipid Biosynthese. Im Folgenden werde ich beschreiben wie zwei der drei SREBPs aus Candida albicans eine regulatorische Kaskade bilden, welche Einfluss auf die Regulierung der Morphologie und der Zellwandzusammensetzung des Pilzes unter anaeroben Bedingungen hat, wohingegen das dritte Protein der SREBP Familie für die Regulierung der Glykolyse von Bedeutung ist. Ich habe festgestellt, dass die beschriebene Vielfalt mit der diese Proteine an bestimmte DNA Sequenzen binden und die damit einhergehende Expansion der regulierbaren Ziele ein wesentlicher Grund dafür ist, dass Organismen dieses Stammbaums erfolgreich Säugetiere kolonisieren können

    Analysis of hybrid genomes in the candida parapsilosis clade

    Get PDF
    The term inter-species hybridisation refers to the crossing of two divergent organisms, leading to a situation where the two parental genomes coexist in the same nuclear compartment. In higher eukaryotes, this scenario often results in incompatibilities and interference between the genetic material of the two parents, generally detrimental for the newly formed hybrid. However, hybridisation also represents a major source of genomic diversity that can drive adaptation to new niches. After a hybridisation event, the resulting hybrids have a highly heterozygous genome which can, on occasion, derive in extreme phenotypes beneficial for adaptation to new niches or confer properties by new allele combinations that are advantageous with respect to the parentals [1]. In the yeast clade of Saccharomycotina, hybridisation has been found to be a rather common phenomenon with numerous hybrid lineages found in industrial environments and many others isolated from clinical settings posing a serious threat to human health [2]. Candida metapsilosis and Candida orthopsilosis are two emergent fungal pathogens species that belong to the Candida parapsilosis sensu lato species complex and have been found to be of hybrid nature [3]. C. metapsilosis descends from a single hybridisation event between unknown parentals whereas for C. orthopsilosis, the isolates found to date originate from one of four hybridisation events from the same two parental lineages, of which only one has been identified [4,5]. The vast majority of clinical isolates from these two species are hybrids. Parental lineages are never or very rarely isolated from clinical settings suggesting that the pathogenic hybrids might have arisen from non-pathogenic parentals. In other words, that hybridisation might enhance the emergence of new hybrid lineages with an advantage to thrive in new environments, such as in the human host. This research aims to shed light into the genomic traits that shape yeast hybrids and their evolution. In particular, we sought to understand what the environmental source of these hybrids and their parental species could be, and what are the genomic traits may have facilitated an opportunistic pathogenic behaviour. To this end, we here analyse the genomes of thirteen marine environmental strains from C. orthopsilosis and C. metapsilosis. We show that the majority of isolates (11 out of 13) are hybrids which expands the map of ecological distributions where these yeasts can be found to include aquatic environments. The fact that hybrids are overrepresented over parental strains also suggests that hybrids have an advantage over parental lineages not only in the clinical settings but in some environmental niches too. We hypothesize that the genomic features that make hybrids highly competitive in certain (perhaps extreme) environments might be also advantageous in other niches like the human body. Consistent with this statement, our phylogenetic reconstruction based on genome-wide polymorphisms shows that the new environmental hybrids fall in (or close to) previously defined clades that harbour clinical isolates. Until now it has been a complex task to fully characterise the genome of a hybrid cell when one or both of the parentals remained unknown, and parameters like divergence between parentals or percentage of each parental haplotype in the hybrid have so far been based on estimations. In this study we find that two of the marine C. orthopsilosis isolates which have highly homozygous genomes represent a long-sought parental lineage so far unidentified. Thus, using a combination of short- and long-read sequencing technologies we generated a genome assembly of the new parental strain which opens a door for future research including the generation of a phased genome with resolved haplotypes that in turn, will lead to a better understanding of the hybrid genomes and a more accurate view of genetic variants

    Diversification of DNA binding specificities enabled SREBP transcription regulators to expand the repertoire of cellular functions that they govern in fungi.

    No full text
    The Sterol Regulatory Element Binding Proteins (SREBPs) are basic-helix-loop-helix transcription regulators that control the expression of sterol biosynthesis genes in higher eukaryotes and some fungi. Surprisingly, SREBPs do not regulate sterol biosynthesis in the ascomycete yeasts (Saccharomycotina) as this role was handed off to an unrelated transcription regulator in this clade. The SREBPs, nonetheless, expanded in fungi such as the ascomycete yeasts Candida spp., raising questions about their role and evolution in these organisms. Here we report that the fungal SREBPs diversified their DNA binding preferences concomitantly with an expansion in function. We establish that several branches of fungal SREBPs preferentially bind non-palindromic DNA sequences, in contrast to the palindromic DNA motifs recognized by most basic-helix-loop-helix proteins (including SREBPs) in higher eukaryotes. Reconstruction and biochemical characterization of the likely ancestor protein suggest that an intrinsic DNA binding promiscuity in the family was resolved by alternative mechanisms in different branches of fungal SREBPs. Furthermore, we show that two SREBPs in the human commensal yeast Candida albicans drive a transcriptional cascade that inhibits a morphological switch under anaerobic conditions. Preventing this morphological transition enhances C. albicans colonization of the mammalian intestine, the fungus' natural niche. Thus, our results illustrate how diversification in DNA binding preferences enabled the functional expansion of a family of eukaryotic transcription regulators
    corecore