10 research outputs found

    Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6–9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer’s disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar­ma­cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Relationship between Apgar scores and long-term cognitive outcomes in individuals with Down syndrome

    No full text
    Abstract This study examined the contribution of the Apgar score at 1 and 5 min after birth to later cognitive functioning in 168 individuals with Down syndrome who were between 6 and 25 years of age at time of cognitive testing. Our results showed that a lower Apgar score at 1 min was related to a worse performance in later cognitive measures of receptive vocabulary, verbal comprehension and production, visual memory and working memory. Results also showed that a lower Apgar score at 5 min was only related to worse later outcomes of verbal comprehension and production and auditory working memory. Our findings suggest a need for future studies investigating how specific perinatal events reflected in the Apgar score are linked to later cognitive functioning in individuals with Down syndrome

    Building the future therapies for down syndrome: the third international conference of the T21 research society

    No full text
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    CracidMex1: a comprehensive database of global occurrences of cracids (Aves, Galliformes) with distribution in Mexico

    No full text
    Cracids are among the most vulnerable groups of Neotropical birds. Almost half of the species of this family are included in a conservation risk category. Twelve taxa occur in Mexico, six of which are considered at risk at national level and two are globally endangered. Therefore, it is imperative that high quality, comprehensive, and high-resolution spatial data on the occurrence of these taxa are made available as a valuable tool in the process of defining appropriate management strategies for conservation at a local and global level. We constructed the CracidMex1 database by collating global records of all cracid taxa that occur in Mexico from available electronic databases, museum specimens, publications, “grey literature”, and unpublished records. We generated a database with 23,896 clean, validated, and standardized geographic records. Database quality control was an iterative process that commenced with the consolidation and elimination of duplicate records, followed by the geo-referencing of records when necessary, and their taxonomic and geographic validation using GIS tools and expert knowledge. We followed the geo-referencing protocol proposed by the Mexican National Commission for the Use and Conservation of Biodiversity. We could not estimate the geographic coordinates of 981 records due to inconsistencies or lack of sufficient information in the description of the locality.Given that current records for most of the taxa have some degree of distributional bias, with redundancies at different spatial scales, the CracidMex1 database has allowed us to detect areas where more sampling effort is required to have a better representation of the global spatial occurrence of these cracids. We also found that particular attention needs to be given to taxa identification in those areas where congeners or conspecifics co-occur in order to avoid taxonomic uncertainty. The construction of the CracidMex1 database represents the first comprehensive research effort to compile current, available global geographic records for a group of cracids. The database can now be improved by continuous revision and addition of new records. The CracidMex1 database will provide high quality input data that could be used to generate species distribution models, to assess temporal changes in species distributions, to identify priority areas for research and conservation, and in the definition of management strategies for this bird group. This compilation exercise could be replicated for other cracid groups or regions to attain a better knowledge of the global occurrences of the species in this vulnerable bird family

    Figure 6 from: Martínez-Morales M, Pinilla-Buitrago G, González-García F, Enríquez P, Rangel-Salazar J, Guichard Romero C, Navarro-Sigüenza A, Monterrubio-Rico T, Escalona-Segura G (2014) CracidMex1: a comprehensive database of global occurrences of cracids (Aves, Galliformes) with distribution in Mexico. ZooKeys 420: 87-115. https://doi.org/10.3897/zookeys.420.7050

    No full text
    corecore