3,473 research outputs found
Sample-Parallel Execution of EBCOT in Fast Mode
JPEG 2000’s most computationally expensive building
block is the Embedded Block Coder with Optimized Truncation
(EBCOT). This paper evaluates how encoders targeting a parallel
architecture such as a GPU can increase their throughput in use
cases where very high data rates are used. The compression
efficiency in the less significant bit-planes is then often poor and
it is beneficial to enable the Selective Arithmetic Coding Bypass
style (fast mode) in order to trade a small loss in compression
efficiency for a reduction of the computational complexity. More
importantly, this style exposes a more finely grained parallelism
that can be exploited to execute the raw coding passes, including
bit-stuffing, in a sample-parallel fashion. For a latency- or
memory critical application that encodes one frame at a time,
EBCOT’s tier-1 is sped up between 1.1x and 2.4x compared to an
optimized GPU-based implementation. When a low GPU
occupancy has already been addressed by encoding multiple
frames in parallel, the throughput can still be improved by 5%
for high-entropy images and 27% for low-entropy images. Best
results are obtained when enabling the fast mode after the fourth
significant bit-plane. For most of the test images the compression
rate is within 1% of the original
Simulating Spiking Neural P systems without delays using GPUs
We present in this paper our work regarding simulating a type of P system
known as a spiking neural P system (SNP system) using graphics processing units
(GPUs). GPUs, because of their architectural optimization for parallel
computations, are well-suited for highly parallelizable problems. Due to the
advent of general purpose GPU computing in recent years, GPUs are not limited
to graphics and video processing alone, but include computationally intensive
scientific and mathematical applications as well. Moreover P systems, including
SNP systems, are inherently and maximally parallel computing models whose
inspirations are taken from the functioning and dynamics of a living cell. In
particular, SNP systems try to give a modest but formal representation of a
special type of cell known as the neuron and their interactions with one
another. The nature of SNP systems allowed their representation as matrices,
which is a crucial step in simulating them on highly parallel devices such as
GPUs. The highly parallel nature of SNP systems necessitate the use of hardware
intended for parallel computations. The simulation algorithms, design
considerations, and implementation are presented. Finally, simulation results,
observations, and analyses using an SNP system that generates all numbers in
- {1} are discussed, as well as recommendations for future work.Comment: 19 pages in total, 4 figures, listings/algorithms, submitted at the
9th Brainstorming Week in Membrane Computing, University of Seville, Spai
Evaluation of GPU/CPU Co-Processing Models for JPEG 2000 Packetization
With the bottom-line goal of increasing the
throughput of a GPU-accelerated JPEG 2000 encoder, this paper
evaluates whether the post-compression rate control and
packetization routines should be carried out on the CPU or on
the GPU. Three co-processing models that differ in how the
workload is split among the CPU and GPU are introduced. Both
routines are discussed and algorithms for executing them in
parallel are presented. Experimental results for compressing a
detail-rich UHD sequence to 4 bits/sample indicate speed-ups of
200x for the rate control and 100x for the packetization
compared to the single-threaded implementation in the
commercial Kakadu library. These two routines executed on the
CPU take 4x as long as all remaining coding steps on the GPU
and therefore present a bottleneck. Even if the CPU bottleneck
could be avoided with multi-threading, it is still beneficial to
execute all coding steps on the GPU as this minimizes the
required device-to-host transfer and thereby speeds up the
critical path from 17.2 fps to 19.5 fps for 4 bits/sample and to
22.4 fps for 0.16 bits/sample
Design and assessment of a computer-assisted artificial intelligence system for predicting preterm labor in women attending regular check-ups. Emphasis in imbalance data learning technique
Tesis por compendio[ES] El parto prematuro, definido como el nacimiento antes de las 37 semanas de gestación, es una importante preocupación mundial con implicaciones para la salud de los recién nacidos y los costes económicos. Afecta aproximadamente al 11% de todos los nacimientos, lo que supone más de 15 millones de individuos en todo el mundo. Los métodos actuales para predecir el parto prematuro carecen de precisión, lo que conduce a un sobrediagnóstico y a una viabilidad limitada en entornos clínicos. La electrohisterografía (EHG) ha surgido como una alternativa prometedora al proporcionar información relevante sobre la electrofisiología uterina. Sin embargo, los sistemas de predicción anteriores basados en EHG no se han trasladado de forma efectiva a la práctica clínica, debido principalmente a los sesgos en el manejo de datos desbalanceados y a la necesidad de modelos de predicción robustos y generalizables.
Esta tesis doctoral pretende desarrollar un sistema de predicción del parto prematuro basado en inteligencia artificial utilizando EHG y datos obstétricos de mujeres sometidas a controles prenatales regulares. Este sistema implica la extracción de características relevantes, la optimización del subespacio de características y la evaluación de estrategias para abordar el reto de los datos desbalanceados para una predicción robusta.
El estudio valida la eficacia de las características temporales, espectrales y no lineales para distinguir entre casos de parto prematuro y a término. Las nuevas medidas de entropía, en concreto la dispersión y la entropía de burbuja, superan a las métricas de entropía tradicionales en la identificación del parto prematuro. Además, el estudio trata de maximizar la información complementaria al tiempo que minimiza la redundancia y las características de ruido para optimizar el subespacio de características para una predicción precisa del parto prematuro mediante un algoritmo genético.
Además, se ha confirmado la fuga de información entre el conjunto de datos de entrenamiento y el de prueba al generar muestras sintéticas antes de la partición de datos, lo que da lugar a una capacidad de generalización sobreestimada del sistema predictor. Estos resultados subrayan la importancia de particionar y después remuestrear para garantizar la independencia de los datos entre las muestras de entrenamiento y de prueba. Se propone combinar el algoritmo genético y el remuestreo en la misma iteración para hacer frente al desequilibrio en el aprendizaje de los datos mediante el enfoque de particio'n-remuestreo, logrando un área bajo la curva ROC del 94% y una precisión media del 84%. Además, el modelo demuestra un F1-score y una sensibilidad de aproximadamente el 80%, superando a los estudios existentes que consideran el enfoque de remuestreo después de particionar. Esto revela el potencial de un sistema de predicción de parto prematuro basado en EHG, permitiendo estrategias orientadas al paciente para mejorar la prevención del parto prematuro, el bienestar materno-fetal y la gestión óptima de los recursos hospitalarios.
En general, esta tesis doctoral proporciona a los clínicos herramientas valiosas para la toma de decisiones en escenarios de riesgo materno-fetal de parto prematuro. Permite a los clínicos diseñar estrategias orientadas al paciente para mejorar la prevención y el manejo del parto prematuro. La metodología propuesta es prometedora para el desarrollo de un sistema integrado de predicción del parto prematuro que pueda mejorar la planificación del embarazo, optimizar la asignación de recursos y reducir el riesgo de parto prematuro.[CA] El part prematur, definit com el naixement abans de les 37 setmanes de gestacio', e's una important preocupacio' mundial amb implicacions per a la salut dels nounats i els costos econo¿mics. Afecta aproximadament a l'11% de tots els naixements, la qual cosa suposa me's de 15 milions d'individus a tot el mo'n. Els me¿todes actuals per a predir el part prematur manquen de precisio', la qual cosa condueix a un sobrediagno¿stic i a una viabilitat limitada en entorns cl¿'nics. La electrohisterografia (EHG) ha sorgit com una alternativa prometedora en proporcionar informacio' rellevant sobre l'electrofisiologia uterina. No obstant aixo¿, els sistemes de prediccio' anteriors basats en EHG no s'han traslladat de manera efectiva a la pra¿ctica cl¿'nica, degut principalment als biaixos en el maneig de dades desequilibrades i a la necessitat de models de prediccio' robustos i generalitzables.
Aquesta tesi doctoral prete'n desenvolupar un sistema de prediccio' del part prematur basat en intel·lige¿ncia artificial utilitzant EHG i dades obste¿triques de dones sotmeses a controls prenatals regulars. Aquest sistema implica l'extraccio' de caracter¿'stiques rellevants, l'optimitzacio' del subespai de caracter¿'stiques i l'avaluacio' d'estrate¿gies per a abordar el repte de les dades desequilibrades per a una prediccio' robusta.
L'estudi valguda l'efica¿cia de les caracter¿'stiques temporals, espectrals i no lineals per a distingir entre casos de part prematur i a terme. Les noves mesures d'entropia, en concret la dispersio' i l'entropia de bambolla, superen a les me¿triques d'entropia tradicionals en la identificacio' del part prematur. A me's, l'estudi tracta de maximitzar la informacio' complementa¿ria al mateix temps que minimitza la redunda¿ncia i les caracter¿'stiques de soroll per a optimitzar el subespai de caracter¿'stiques per a una prediccio' precisa del part prematur mitjan¿cant un algorisme gene¿tic.
A me's, hem confirmat la fugida d'informacio' entre el conjunt de dades d'entrenament i el de prova en generar mostres sinte¿tiques abans de la particio' de dades, la qual cosa dona lloc a una capacitat de generalitzacio' sobreestimada del sistema predictor. Aquests resultats subratllen la importa¿ncia de particionar i despre's remostrejar per a garantir la independe¿ncia de les dades entre les mostres d'entrenament i de prova. Proposem combinar l'algorisme gene¿tic i el remostreig en la mateixa iteracio' per a fer front al desequilibri en l'aprenentatge de les dades mitjan¿cant l'enfocament de particio'-remostrege, aconseguint una a¿rea sota la corba ROC del 94% i una precisio' mitjana del 84%. A me's, el model demostra una puntuacio' F1 i una sensibilitat d'aproximadament el 80%, superant als estudis existents que consideren l'enfocament de remostreig despre's de particionar. Aixo¿ revela el potencial d'un sistema de prediccio' de part prematur basat en EHG, permetent estrate¿gies orientades al pacient per a millorar la prevencio' del part prematur, el benestar matern-fetal i la gestio' o¿ptima dels recursos hospitalaris.
En general, aquesta tesi doctoral proporciona als cl¿'nics eines valuoses per a la presa de decisions en escenaris de risc matern-fetal de part prematur. Permet als cl¿'nics dissenyar estrate¿gies orientades al pacient per a millorar la prevencio' i el maneig del part prematur. La metodologia proposada e's prometedora per al desenvolupament d'un sistema integrat de prediccio' del part prematur que puga millorar la planificacio' de l'embara¿s, optimitzar l'assignacio' de recursos i millorar la qualitat de l'atencio'.[EN] Preterm delivery, defined as birth before 37 weeks of gestation, is a significant global concern with implications for the health of newborns and economic costs. It affects approximately 11% of all births, amounting to more than 15 million individuals worldwide. Current methods for predicting preterm labor lack precision, leading to overdiagnosis and limited practicality in clinical settings. Electrohysterography (EHG) has emerged as a promising alternative by providing relevant information about uterine electrophysiology. However, previous prediction systems based on EHG have not effectively translated into clinical practice, primarily due to biases in handling imbalanced data and the need for robust and generalizable prediction models.
This doctoral thesis aims to develop an artificial intelligence based preterm labor prediction system using EHG and obstetric data from women undergoing regular prenatal check-ups. This system entails extracting relevant features, optimizing the feature subspace, and evaluating strategies to address the imbalanced data challenge for robust prediction.
The study validates the effectiveness of temporal, spectral, and non-linear features in distinguishing between preterm and term labor cases. Novel entropy measures, namely dispersion and bubble entropy, outperform traditional entropy metrics in identifying preterm labor. Additionally, the study seeks to maximize complementary information while minimizing redundancy and noise features to optimize the feature subspace for accurate preterm delivery prediction by a genetic algorithm.
Furthermore, we have confirmed leakage information between train and test data set when generating synthetic samples before data partitioning giving rise to an overestimated generalization capability of the predictor system. These results emphasize the importance of using partitioning-resampling techniques for ensuring data independence between train and test samples. We propose to combine genetic algorithm and resampling method at the same iteration to deal with imbalanced data learning using partition-resampling pipeline, achieving an Area Under the ROC Curve of 94% and Average Precision of 84%. Moreover, the model demonstrates an F1-score and recall of approximately 80%, outperforming existing studies on partition-resampling pipeline.
This finding reveals the potential of an EHG-based preterm birth prediction system, enabling patient-oriented strategies for enhanced preterm labor prevention, maternal-fetal well-being, and optimal hospital resource management.
Overall, this doctoral thesis provides clinicians with valuable tools for decision-making in preterm labor maternal-fetal risk scenarios. It enables clinicians to design a patient-oriented strategies for enhanced preterm birth prevention and management. The proposed methodology holds promise for the development of an integrated preterm birth prediction system that can enhance pregnancy planning, optimize resource allocation, and ultimately improve the outcomes for both mother and baby.Nieto Del Amor, F. (2023). Design and assessment of a computer-assisted artificial intelligence system for predicting preterm labor in women attending regular check-ups. Emphasis in imbalance data learning technique [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200900Compendi
A New Strategy to Improve the Performance of PDP-Systems Simulators
One of the major challenges that current P systems simulators
have to deal with is to be as efficient as possible. A P system
is syntactically described as a membrane structure delimiting regions
where multisets of objects evolve by means of evolution rules. According
to that, on each computation step, the applicability of the rules for
the current P system configuration must be calculated. In this paper we
extend previous works that use Rete-based simulation algorithm in order
to improve the time consumed during the checking phase in the selection
of rules. A new approach is presented, oriented to the acceleration of
Population Dynamics P Systems simulations.Ministerio de Economía y Competitividad TIN2012- 3743
A Simulation Workflow for Membrane Computing: From MeCoSim to PMCGPU Through P-Lingua
P system simulators are of high importance in Membrane
Computing, since they provide tools to assist on model validation and
verification. Keeping a balance between generality and flexibility, on the
one side, and efficiency, on the other hand, is always challenging, but it
is worth the effort. Besides, in order to prove the feasibility of P system
models as practical tools for solving problems and aid in decision making,
it is essential to provide functional mechanisms to have all the elements
required at disposal of the potential users smoothly integrated in a robust
workflow. The aim of this paper is to describe the main components and
connections within the approach followed in this pipeline.Ministerio de Industria, Economía y Competitividad TIN2017-89842-
An Improved GPU Simulator For Spiking Neural P Systems
Spiking Neural P (SNP) systems, variants of Psystems (under Membrane and Natural computing), are computing models that acquire abstraction and inspiration from the way neurons 'compute' or process information. Similar to other P system variants, SNP systems are Turing complete models that by nature compute non-deterministically and in a maximally parallel manner. P systems usually trade (often exponential) space for (polynomial to constant) time. Due to this nature, P system variants are currently limited to parallel simulations, and several variants have already been simulated in parallel devices. In this paper we present an improved SNP system simulator based on graphics processing units (GPUs). Among other reasons, current GPUs are architectured for massively parallel computations, thus making GPUs very suitable for SNP system simulation. The computing model, hardware/software considerations, and simulation algorithm are presented, as well as the comparisons of the CPU only and CPU-GPU based simulators.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420
Platería del siglo XVIII en La Rambla (Córdoba)
En este texto se presentarán una serie de piezas de platería, que forman parte del ajuar de la parroquia de Nuestra Señora de la Asunción de La Rambla (Córdoba). Todas ellas fueron realizadas a lo largo del siglo XVIII dentro de los estilos barroco y rococó. Algunas de ellas proceden de la mano de plateros destacados del gremio cordobés, como fueron Antonio Ruiz “el viejo”, Antonio Ruiz de León “el joven” o Juan Sánchez Soto, entre otros. De otras se estudiará su posible proveniencia de Iberoamérica y se completará con un pequeño grupo de enseres, cuya autoría aún está por determinar, pero que vendrán a completar el panorama setecentista rambleñoIn this text will be presented a series of pieces of silver, which are part of the trousseau of the parish of Our Lady of the Assumption of La Rambla (Cordoba). All of them were made throughout the eighteenth century in the baroque and rococo styles. Some of them come from the hand of prominent silversmiths from the Cordoban guild, such as Antonio Ruiz "el viejo", Antonio Ruiz de León "el joven" or Juan Sánchez Soto, among others. Others will study the possible origin of Ibero-America and will be completed with a small group of items, whose authorship is yet to be determined, but which will come to complete the eighteenth century rambl
Movies Tags Extraction Using Deep Learning
Retrieving information from movies is becoming increasingly
demanding due to the enormous amount of multimedia
data generated each day. Not only it helps in efficient
search, archiving and classification of movies, but is also instrumental
in content censorship and recommendation systems.
Extracting key information from a movie and summarizing
it in a few tags which best describe the movie presents
a dedicated challenge and requires an intelligent approach
to automatically analyze the movie. In this paper, we formulate
movies tags extraction problem as a machine learning
classification problem and train a Convolution Neural Network
(CNN) on a carefully constructed tag vocabulary. Our
proposed technique first extracts key frames from a movie
and applies the trained classifier on the key frames. The
predictions from the classifier are assigned scores and are
filtered based on their relative strengths to generate a compact
set of most relevant key tags. We performed a rigorous
subjective evaluation of our proposed technique for a
wide variety of movies with different experiments. The evaluation
results presented in this paper demonstrate that our
proposed approach can efficiently extract the key tags of a
movie with a good accuracy
How to Disguise Fairy Tales in 21st Century Ireland. A Feminist Analysis of Marian Keyes’ and Cathy Kelly’s Blockbusters
Ireland has suffered many extraordinary changes during the last decades that have made the
Emerald Isle a geographical point upon which all eyes are fixed. Despite this metamorphosis, the
question is if its population and cultural heritage have been able to cope with the times. Known as a
traditionally catholic and conservative country, many social aspects remain unchangeable and those
that have evolved may still keep an inner glimpse of the old times that is not always easily
recognizable.
Undoubtedly, women and all subjects related to them have experienced a revolution. However, data
show that true equality is still far from being reached. In this context, literature must be taken as a
powerful cultural force that helps create stereotypes and a popular conscience. Thus, this article
analyses the success of what has been called “women’s literature”, especially Marian Keyes’ and
Cathy Kelly’s bestselling books. It also tries to examine to what extent the traditional ideologies of
womanhood are present and by which means their female protagonists attach to the old stereotypes
under a mask of modernity and economic boom. Finally, their effects on the female Irish population
will also be studied in order to demonstrate that globalization and modern capitalism prove to be
unable to change the old myths that lie beneath and keep women in a relegated position
- …