
 An Improved GPU Simulator For Spiking Neural P Systems

Francis George C. Cabarle
Algorithms and Complexity lab Dept.
of Computer Science University of the

Philippines Diliman
fccabarle@up.edu.ph

Henry Adorna

Algorithms and Complexity lab Dept.
of Computer Science University of

the Philippines Diliman
ha@dcs.upd.edu.ph

Miguel A. Martı́nez–del–Amor
Research Group on Natural Computing

Dept. of Computer Science and AI
University of Seville, Spain

mdelamor@us.es

Abstract—Spiking Neural P (SNP) systems, variants of P
systems (under Membrane and Natural computing), are com-
puting models that acquire abstraction and inspiration from
the way neurons ‘compute’ or process information. Similar
to other P system variants, SNP systems are Turing complete
models that by nature compute non-deterministically and in
a maximally parallel manner. P systems usually trade (often
exponential) space for (polynomial to constant) time. Due to
this nature, P system variants are currently limited to parallel
simulations, and several variants have already been simulated
in parallel devices. In this paper we present an improved SNP
system simulator based on graphics processing units (GPUs).
Among other reasons, current GPUs are architectured for
massively parallel computations, thus making GPUs very
suitable for SNP system simulation. The computing model,
hardware/software considerations, and simulation algorithm
are presented, as well as the comparisons of the CPU only
and CPU-GPU based simulators.

Keywords-Computational modeling; Parallel processing;
Multicore processing

I. INTRODUCTION

Membrane computing uses P systems (named after their

inventor, Gheorghe Păun) as computing models and was

introduced in 1998 [6]. The objective, as with other

disciplines of natural computing (e.g. DNA/molecular

computing, quantum computing, etc.) is to obtain inspi-

ration and abstraction from the way nature (in this case

cells) computes. By ‘compute’ we mean to say the system

(whether formal/mathematical in the case of SNP systems,

or biological as in real living cells) processes information:

data is read from memory, gets processed and is acted

on accordingly due to some rules and environmental

stimuli, and is written back to memory for use in future

processes [2]. Another objective, among others, is to be

able to solve current and perhaps newer hard problems

(e.g. NP-complete) and go beyond the classical model of

computation, the Turing machine. We obtain ideas from

the way nature computes, since nature has been efficiently

doing so for billions of years (as current researches point

out nature itself can solve lots of our hard problems), and

thus we introduce unconventional models of computation

from the area of natural computing. Membrane computing

can be thought of as an extension of DNA or molecular

computing, zooming out from the individual molecules of

the DNA and including other parts and sections of the cell

in the computation, introducing the concept of distributed

computing [6].

P systems (most variants at least) compute in a non-

deterministic and maximally parallel manner, oftentimes

requiring exponential space as trade off to solve hard

problems in polynomial to even constant time. However,

due to this nature and trade off, P systems are yet to be

fully implemented in vivo, in vitro, or even in silico. We

thus refer to their simulations using parallel devices such

as GPUs to further study them.

Since P systems were introduced, many simulators

using different parallel devices have been produced [11],

including computer clusters [12], reconfigurable hardware

as in FPGAs [13], as well as GPUs [9], [8]. These efforts

show that parallel devices are very suitable in simulating

P systems, at least for the first few P system variants to

have been introduced. Efficiently simulating SNP systems

would thus require new attempts in parallel devices.

GPUs on the other hand are currently one of the

foremost candidates for simulating P systems due to

several significant reasons. One is that because of GPGPU

computing (general purpose GPU computing), their ar-

chitecture which is specifically designed for massively

parallel computations, are laid bare to programmers [1].

Programmers aren’t limited to graphics processing alone,

as was done in the early days of GPUs. Instead, general

purpose computations such as trigonometric and linear

algebra operations can now be performed on GPUs. An-

other reason is that GPUs offer very large speedups versus

CPU only implementations, including clustered CPUs,

by consuming less energy at the fraction of the cost

of setting up and maintaining CPU clusters [14], [15].

Parallel computing concepts such as hardware abstraction,

scaling, and so on are also handled efficiently by current

GPUs.

Given that SNP systems have already been represented

as matrices due to their graph-like properties [5], simu-

lating them in parallel devices such as GPUs is the next

natural step. Matrix algorithms are well known in parallel

computing literature, including GPUs [16], [17], due to the

highly parallelizable nature of linear algebra computations

mapping directly to the data-parallel architecture of GPUs.

Previously, SNP systems have been faithfully imple-

mented in GPUs using their matrix representation [10]. We

thus extend this previous work to improve the performance

of the simulator, as well as include speedups comparing

the CPU only simulator versus the CPU-GPU simulator.

This paper is organized as follows: Section II introduces

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/222572302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SNP systems formally, as well as their matrix repre-

sentation. Section III provides background for GPGPU

computing with CUDA. The design of the simulator and

simulation results are given in Section IV and Section V,

respectively. Finally, conclusions, future work, acknowl-

edgements, and references end this paper.

II. SPIKING NEURAL P SYSTEMS

A. Computing with SN P systems

Within SNP systems there are further variations, such

as those without delays, those with extended rules, deter-

ministic systems, and so on. Many of these SNP system

variants have been shown to be Turing complete [3], [4].

The type of SNP systems focused on by this paper (scope)

are those without delays, and they are of the form:

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the alphabet made up of only one object

a, called spike.

2. σ1, . . . , σm are m number of neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

(a) ni ≥ 0 gives the initial number of as i.e. spikes

contained in neuron σi

(b) Ri is a finite set of rules of the following

forms:

(b-1) E/ac → ap, are known as Spiking rules,

where E is a regular expression over a, and

c ≥ 1, such that p ≥ 1 number of spikes

are produced, one for each adjacent neuron

with σi as the originating neuron and ac ∈
L(E).

(b-2) as → λ, are known as Forgetting rules, for

s ≥ 1, such that for each rule E/ac → a
of type (b-1) from Ri, a

s /∈ L(E).
(b-3) ac → a, a special case of (b-1) where L(E)

= {ac}, k = c, p = 1.

3. syn = {(i, j) | 1 ≤ i, j ≤ m, i �= j } are the

synapses i.e. connection between neurons.

4. in, out ∈ {1, 2, . . . ,m} are the input and output

neurons, respectively.

Rules of type (b-1) are applied if σi contains k spikes,

ak ∈ L(E) and k ≥ c. Using this type of rule consumes k
spikes from the neuron, producing a spike to each of the

neuron/s connected to it via the syn graph. In this manner,

for rules of type (b-2) if σi contains s spikes, then s spikes

are ‘forgotten’ or removed from the neuron once the rule

is applied.

The neurons in an SNP system operate in parallel and in

unison, under a global clock [3]. However, only one rule

can be applied at a given time in each neuron [3], [5]. The

non-determinism of SNP systems come with this fact: if

more than one rule is applicable at a given time, given

enough spikes in a neuron, then the rule to be applied is

chosen non-deterministically.

Figure 1. An SNP system Π, generating all numbers in the set N -
{1}, from [5].

The SNP system Π shown in Figure 1 generates all

numbers in the set N - {1} once all rules are applied

non-deterministically, given initial conditions. The com-

putation halts on each element of the set Π generates. The

outputs of the computation of Π are derived from the time

difference between the first spike of the output neuron (to

the environment) and its succeeding spikes. It can be seen

that a total system ordering is given to neurons (from (1)

to (3)) and rules (from (1) to (5)) of the system. This

SNP system is of the form Π = ({a}, σ1, σ2, σ3, syn, out)
where σ1 = (2, {R1, R2}), n1 = 2, R1 = {a2/a →
a}, R2 = {a2 → a}, (neurons 2 to 3 and their nis

and Ris can be similarly shown in the same manner),

syn = {(1, 2), (1, 3), (2, 1), (2, 3)} are the synapses for

Π, and the output neuron out = σ3, as can be seen by the

arrow not pointing to any neuron. Π has no input neuron.

B. Matrix representation of SNP systems

In [5], a matrix representation of SNP systems without

delays was introduced. This representation makes use of

the following vectors and matrix definitions:

Configuration vector Ck is the vector containing all

spikes in every neuron on the kth computation step/time,

where C0 is the initial vector containing all spikes in the

system at the beginning of the computation. For Π (the

example in Figure 1) C0 =< 2, 1, 1 >.

Spiking vector Sk shows, at a given configuration Ck,

if a rule is applicable (having value 1) or not (having

value 0 instead). For Π we have a spiking vector Sk =<
1, 0, 1, 1, 0 > given C0. Note that a second spiking vector,

Sk =< 0, 1, 1, 1, 0 >, is possible if we use rule (2) over

rule (1) instead (but not both at the same time). Given

C0 of Π we thus cannot have an Sk =< 1, 1, 1, 1, 0 >
so this Sk is invalid. V alidity in this case means that

only one among several applicable rules (chosen non-

deterministically) is used and thus represented in a spiking

vector for a given σ. We recall the applicability of rules

from the definitions of (b-1) to (b-3).

Spiking transition matrix MSNP is a matrix comprised

of aij elements where aij is given as

aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−c, rule ri is in σj and is applied consuming

c spikes;

p, rule ri is in σs (s �= j and (s, j) ∈ syn)

and is applied producing p spikes in total;

0, rule ri is in σs (s �= j and (s, j) /∈ syn).

In such a scheme, rows represent rules and columns

represent neurons. For Π, the MSNP is as follows:

MΠ =

⎛
⎜⎜⎜⎜⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞
⎟⎟⎟⎟⎠

(1)

Finally, the following equation provides the configura-

tion vector at the (k + 1)th step, given the configuration

vector (Ck) and spiking vector (Sk) at the kth step, and

MΠ:

Ck+1 = Ck + Sk ·MΠ (2)

III. COMPUTING WITH GPUS

A. NVIDIA CUDA

NVIDIA, a well known manufacturer of graphics pro-

cessors, introduced the Compute Unified Device Archi-

tecture (CUDA) in 2007 [14]. CUDA is a programming

model and hardware architecture for general purpose com-

putations in NVIDIA’s GPUs (G80 and newer family of

GPUs)[14]. CUDA, by extending popular languages such

as C, allows programmers to easily create software that

will be executed in parallel, avoiding low-level graphics

and hardware primitives[15]. Among the other benefits of

CUDA include abstracted and automated scaling: more

cores will make the parallelized code run faster than GPUs

with fewer cores [15]. GPUs introduce very large speedups

over CPU only implementations in linear algebra compu-

tations (among other types of computations) because of

the GPU architecture. The common CPU architectures are

composed of transistors which are divided into different

blocks to perform the basic tasks of CPUs (general compu-

tation): control, caching, DRAM, and ALU (arithmetic and

logic). In contrast, only a fraction of the CPU’s transistors

allocated for control and caching are used by GPUs,

since far more transistors are used for ALU [14]. This

architectural difference is a very distinct and significant

reason why GPUs offer larger performance increase over

CPU only implementation of parallel code working on

large amounts of input data.

A CUDA program is often divided into two parts:

the host (CPU side) and the device (GPU side). The

host/CPU part of the code is generally responsible for

controlling the program execution flow, allocating memory

in the host or device/GPU, and obtaining the results from

the device. The device (or devices if there are several

GPUs in the setup) act as co-processors to the host. The

host outsources the parallel part of the program as well as

the data to the device since it is more suited to parallel

computations than the host. Code written for CUDA can

be split up into multiple threads within multiple thread

blocks, each contained within a grid of (thread) blocks.

These grids belong to a single device/single GPU. Each

device has multiple cores, each capable of running its own

block of threads [14], [15]. A function known as a kernel
function is one that is called from the host but executed

in the device. Using kernel functions, the programmer can

specify the GPU resources: the layout of the threads (from

one to three dimensions) and the blocks (from one to two

dimensions).

B. SNP system GPU simulation

A first version of an SNP system GPU simulator is

described in [10] (we designate this as snpgpu-sim1). The

focus in [10] was primarily on the simulation algorithm as

well as the implementation of the computations (equation

(2)) in parallel using the GPU. The comparison of the

CPU only and CPU-GPU running times was not analysed

in [10]. The snpgpu-sim1 was also written in Python and

C.

The reason for using Python was to be able to use

an object oriented programming language (OOPL) since

OOPLs are very suited in manipulating strings. Checking

whether a rule is applicable given the regular expression

E in a neuron requires manipulation of the matrix/vector

elements (i.e. elements of M, Sk, Ck) as strings. The C

language was then used to work on the elements when they

are treated as integers, since C is very suited for compu-

tations involving integers and floating numbers. OOPLs

provide the necessary expressivity for strings while the

structured languages (e.g. C) are for integral computations.

Also, the current dichotomy of the CUDA programming

is to have the host/CPU work on the input/output parts

(parsing, formatting etc) of the simulation (since CPU

dedicates more transistors for these purposes) while the

parts which can be done in parallel are sent to the

GPU (since GPUs have more transistors for arithmetic

operations).

The simulation algorithm for snpgpu-sim1 is given in

Algorithm 1, with 2 Stopping criteria: (I) if a zero vector
(vector of zeros) is encountered, (II) if the succeeding Cks

have all been produced in previous computations. Both

(I) and (II) make sure that the simulation halts and does

not enter an infinite loop. Algorithm 1 points out which

device/s (either HOST/CPU or DEVICE/GPU) a certain

part of the simulation runs on. The file Ck is the file

counterpart of the vector Ck, file M contains the matrix

MΠ, and file r contains the rules from Ri.

Algorithm 1 Overview of SNP system simulation algo-

rithm
Require: Input files: Ck, M, r.

I. (HOST) Load input files. M , r are loaded once only.

C0 is also loaded once, then Cks afterwards.

II. (HOST) Determine if a rule in r is applicable based

on the number of spikes present in each neuron/σ seen

in Ck. Then, generate all valid and possible spiking

vectors in Sk, a list of lists, given the 3 inputs.

III. (DEVICE) Run kernel function on all valid and

possible Sk from the current Ck. Produce the next

configurations, Ck +1 and their corresponding Sks.

IV. (HOST+DEVICE) Repeat steps I to IV, till at least

one of the two Stopping criteria is encountered.

C. PyCUDA: CUDA Python wrapper

To further improve the performance of snpgpu-sim1,

we designate our work in this paper as snpgpu-sim2 and

still involve the Python and C languages. However, even

with the compiled part of snpgpu-sim1 (done in C, as

Python is commonly an interpreted language) we still call

the C part from the Python part of snpgpu-sim1. This

Python-C tandem is still used in snpgpu-sim2 although

there are significant changes in order to improve the

performance of the simulator: (1) Included C code is very

minimal, such that precisely only the parts which involve

integer manipulation are handled by C (2) C is no longer

called from outside the Python code since the C code is

now embedded within the Python code, existing only as

purely the kernel function and nothing else (3) the use

of PyCUDA [7] to further abstract the memory allocation,

cleanup and kernel function calls within Python.

PyCUDA was developed by mathematician Andreas

Klöckner, which he used in his dissertation, in order to

create safer (e.g. memory handling) and faster (in terms

of development time) software using an OOPL such as

Python [7]. PyCUDA is a wrapper or a programming

interface of CUDA for Python, and has been used in nu-

merous researches and real world applications [7]. Lines of

code usually written in C simply become function calls in

PyCUDA. Another reason for performance improvement

using PyCUDA is that it uses NumPy to represent the

data it manipulates. NumPy is a Python extension for

large multi-dimensional arrays, matrices, and high-level

mathematical functions and operations, and is an open
source alternative to similar software such as MATLAB.

IV. IMPROVED SNP SYSTEM GPU SIMULATOR:

snpgpu-sim2

The simulation setup for snpgpu-sim2 (the same setup

used in snpgpu-sim1) is an Apple iMac running Mac OS X

10.5.8, with an Intel Core2Duo CPU at 2.66GHz and with

a 6MB L2 cache. The iMac has a CUDA enabled NVIDIA

GeForce 9400 graphics card at a clock rate of 1.15 GHz,

with 256MB VRAM, 16 cores and with CUDA version

3.1. The simulation algorithm used for snpgpu-sim1 is

the one used for snpgpu-sim2 (Algorithm 1) although the

reasons for performance increase have been mentioned in

Subsection III-C.

The inputs for Algorithm 1 are loaded from text files
(Ck, r, M , Sk) containing the elements of the vectors (Ck

and Sk), rule list (Ri), and MΠ delimited by either white

spaces or the ‘$’ symbol. Elements of MΠ are entered in

a row-major order (linear array of all the elements of the

matrix, where rows are appended one after the other). The

row-major ordering of MΠ is thus: 1, 1, 1, 2, 1, 1, 1, 1,

1, 0, 0, 1, 0, 0, 2. Another common practice in CUDA

programming (and in parallel computing in general) is

the following: inputs are loaded first in the host, memory

is allocated in the device (to receive the loaded inputs),

inputs are then moved from the host to the device, the

device executes parallel computations on the input data,

the data is moved from the device back to the host, and

the host outputs the data for other purposes. This practice

is observed with the implementation of Algorithm 1.

Recalling equation (2), multiplication of MΠ to Sk is

done by assigning each element of the two multiplicands

to a thread in the device and then performing multiplica-

tion. This multiplication operation between Sk and MΠ

(represented as a linear array) is essentially a dot product,

although each element multiplication is done in parallel

by the device i.e. all multiplications are done at the same

time. Once the product is obtained, it is then added (again

done in parallel, with one element addition per thread) to

the elements of Ck. After equation (2) has been executed

for all possible and valid Sks for a given Ck, the Ck+1s

are moved from the device back to the host to be checked

again for the stopping criteria mentioned in Subsection IV

(also shown in Algorithm 1). Current CPUs can certainly

do dot products efficiently, but what sets GPUs apart is

that they can efficiently and simultaneously compute dot

products (among other operations) using tens of thousands

of threads over hundreds of cores at greater speedups,

and at the fraction of the cost and energy consumption

of clusters and similar CPU only setups.

V. SIMULATION RESULTS AND OBSERVATIONS

Using snpgpu-sim2 we simulate the SNP system Π
shown in Figure 1. Given C0 = (2, 1, 1), Figure 2 shows

the configuration tree for Π. Cks followed by a (. . .)

go deeper (i.e. produce more Cks) than what is shown

in the figure. It can be observed that the Ck = (2, 0, 1)
ends the configuration tree at that point (Ck = (2, 0, 1)
is thus a terminal or leaf node in the tree) because

Ck = (2, 0, 1) has already been produced from C0 =
(2, 1, 1) → (1, 1, 2) → (2, 0, 1). Hence by the second

stopping criteria we do not proceed after encountering

Ck = (2, 0, 1) the second time around.

To compare the performance of the GPU based SNP

system simulator, Algorithm 1 was used to create a

Python-C simulator but which is solely executed in the

host/CPU. Thus, the parallel parts in snpgpu-sim2 written

using PyCUDA (Python + C) were written to run in

the CPU only. The simulation comparison is as follows:

The CPU version of the simulator (we designate this as

snpcpu-sim) and snpgpu-sim2 are given similar C0 (initial

configuration vector) as inputs, and are run at least three

times (three trials) per C0. The average of the three trials

is then taken and the bar chart from the average of the

trials are shown in Figure 3.

As seen in Figure 3, the five C0 values used for the

comparison are (2,1,2), (3,1,3), (4,1,4), (6,1,6), and (9,1,9).

In Figure 3 we have as the horizontal axis the C0 values,

while the vertical axis is in seconds i.e. the running time

of snpcpu-sim and snpgpu-sim2. As we increase the C0

values for Π, it can be seen from Figure 3 that snpgpu-
sim2 performs better (i.e. simulation time average is lower)

compared to snpcpu-sim. In fact, a speedup of up to 1.43

times is seen if Π is simulated using snpgpu-sim2 over

snpcpu-sim. It is worth noting that although the decrease

in running time of snpgpu-sim2 over snpcpu-sim (and

Figure 2. Ck tree for SNP system Π with C0 = (2, 1, 1).

Figure 3. Graph of the average runtime of the CPU only simulator
(snpcpu-sim) versus the CPU-GPU simulator (snpgpu-sim2) over differ-
ent C0 values.

hence the performance speedup) is obvious from Figure

3, the speedup wasn’t very large because Π only has three

neurons. The simulation done with Π was with increasing

values of C0 only.

The runtime charts for snpgpu-sim1 (not shown in

Figure 3) as compared to snpcpu-sim and snpgpu-sim2
take longer times to finish compared to snpcpu-sim. The

slowdown of snpgpu-sim1 over snpcpu-sim is present even

though the Ck+1s were computed in parallel (following

in Algorithm 1) because of the following implementation

reasons: (i) as mentioned in an earlier section, Python

was calling the CUDA code written in C outside of the

Python host code (ii) the C code for snpgpu-sim1 did

more than integer computations, as it was also tasked to

write the output Ck+1s to files after allocating memory

in the device for itself, among other things it did (recall

improvements made to snpgpu-sim2 from snpgpu-sim1 in

subsection III-C).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an improved SNP

system simulator based on the GPU, using NVIDIA

CUDA. The algorithm and the hardware-software design

considerations used to improve the simulator snpgpu-sim2
(using both the CPU and the GPU) over the CPU only

simulator snpcpu-sim were also discussed. The results

show that we have simulated the workings of the com-

puting model (an SNP system without delays) and that

snpgpu-sim2 has significant performance speedups over

snpcpu-sim especially for higher values of C0. The use

of the OOPL Python via the PyCUDA wrapper has sped

up the simulator development and lowered the simulation

time. Because SNP systems manipulate spikes as objects

(represented as strings in Python) Python provided the

necessary expressivity for string manipulation. The matrix

representation however of the SNP system involved the

manipulation of vector and matrix values as integers and

this has also been successfully implemented by embedding

minimal C code within the PyCUDA simulator.

For our future work, we would like to implement other

variants of SNP systems, including those with delays, as

well as more general regular expressions (those of the form

(b-1)). The use of sparse matrix-vector implementations

for the inputs (Ck, M , r) should also be included (since

at the moment Ck, Sk and M are transformed into square

matrices). Further understanding of the CUDA architecture

(inter-thread communication and memory management

for very large inputs/matrices) and the execution of the

simulator in GPU clusters with newer GPUs and with more

cores are planned. Finally, larger SNP systems (i.e. more

neurons than Π) are also to be simulated in order to fully

utilize the speedup and performance increase attributed to

the massively parallel execution in GPUs.

ACKNOWLEDGMENTS

Francis Cabarle is supported by the DOST-ERDT pro-

gram. Henry Adorna is funded by the DOST-ERDT re-

search grant and the Alexan professorial chair of the

UP Diliman Department of Computer Science. Miguel A.

Martı́nez–del–Amor is supported by “Proyecto de Exce-

lencia con Investigador de Reconocida Valı́a” of the “Junta

de Andalucı́a” under grant P08-TIC04200, and by the

project TIN2009–13192 of the “Ministerio de Educación y

Ciencia” of Spain, both co-financed by FEDER funds. We

thank and acknowledge the anonymous referees for their

detailed comments on this paper which helped improve it

REFERENCES

[1] M. Harris, “Mapping computational concepts to GPUs”,
ACM SIGGRAPH 2005 Courses, NY, USA, 2005.

[2] M. Gross, “Molecular computation”, Chapter 2 of Non-
Standard Computation, (T. Gramss, S. Bornholdt, M. Gross,
M. Mitchel, Th. Pellizzari, eds.), Wiley-VCH, Weinheim,
1998.

[3] M. Ionescu, Gh. Păun, T. Yokomori, “Spiking Neural P
Systems”, Journal Fundamenta Informaticae , vol. 71, issue
2,3 pp. 279-308, Feb. 2006.

[4] H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun,
M. Pérez-Jiménez, “Spiking neural P systems with extended
rules: universality and languages”. Natural Computing: an
international journal, vol. 7, issue 2, pp. 147166, Jun. 2008.

[5] X. Zeng, H. Adorna, M. A. Martı́nez-del-Amor, L. Pan, M.
Pérez-Jiménez, “Matrix Representation of Spiking Neural
P Systems”, 11th International Conference on Membrane
Computing, Jena, Germany, Aug. 2010 and Lecture Notes in
Computer Science, Springer, vol. 6501, pp. 377-39, 2011.

[6] Gh. Păun, G. Ciobanu, M. Pérez-Jiménez (Eds), Applica-
tions of Membrane Computing, Natural Computing Series,
Springer, 2006.

[7] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov,
and A. Fasih, “PyCUDA: GPU Run-Time Code Generation
for High-Performance Computing”, Scientific Computing
Group, Brown University, no. 2009-40, RI, USA, Nov. 2009

[8] J.M. Cecilia, J.M. Garcı́a, G.D. Guerrero, M.A. Martı́nez-
del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, “Simulat-
ing a P system based efficient solution to SAT by using
GPUs”, Journal of Logic and Algebraic Programming, Vol
79, issue 6, pp. 317-325, Apr. 2010.

[9] J.M. Cecilia, J.M. Garcı́a, G.D. Guerrero, M.A. Martı́nez-
del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, “Simu-
lation of P systems with active membranes on CUDA”,
Briefings in Bioinformatics, Vol 11, issue 3, pp. 313-322,
Mar. 2010.

[10] F. Cabarle, H. Adorna, M.A. Martı́nez-del-Amor, “Simulat-
ing Spiking Neural P systems without delays using GPUs”,
Proceedings of the 9th Brainstorming Week on Membrane
Computing, Sevilla, Spain, Feb. 2011.

[11] D. Dı́az, C. Graciani, M.A. Gutiérrez, I. Pérez-Hurtado,
M.J. Pérez-Jiménez. “Software for P systems”. In Gh. Păun,
G. Rozenberg, A. Salomaa (eds.) The Oxford Handbook
of Membrane Computing, Oxford University Press, Oxford
(U.K.), Chapter 17, pp. 437-454, 2009.

[12] G. Ciobanu, G. Wenyuan. “P Systems Running on a Cluster
of Computers”. Lecture Notes in Computer Science, 2933,
123-139, 2004.

[13] V. Nguyen, D. Kearney, G. Gioiosa. “A Region-Oriented
Hardware Implementation for Membrane Computing Appli-
cations and Its Integration into Reconfig-P”. Lecture Notes
in Computer Science, 5957, 385-409, 2010.

[14] D. Kirk, W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands On Approach, 1st ed. MA, USA: Morgan
Kaufmann, 2010.

[15] NVIDIA corporation,“NVIDIA CUDA C programming
guide”, version 3.0, CA, USA: NVIDIA, 2010.

[16] V. Volkov, J. Demmel, “Benchmarking GPUs to tune dense
linear algebra”, Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing, NJ, USA, 2008.

[17] K. Fatahalian, J. Sugerman, P. Hanrahan, “Under-
standing the efficiency of GPU algorithms for matrix-
matrix multiplication”, In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware (HWWS ’04) , ACM, NY, USA, pp. 133-137, 2004

