681 research outputs found

    Air data measurement system for space shuttle

    Get PDF
    It is concluded that air data measurements of angle of attack and sideslip are needed to control the space shuttle vehicles. The basis for this conclusion, along with recommended sensor design and implementation, are described

    Chitosanase-based method for RNA isolation from cells transfected with chitosan/siRNA nanocomplexes for real-time RT-PCR in gene silencing

    Get PDF
    Chitosan, a well known natural cationic polysaccharide, has been successfully implemented in vitro and in vivo as a nonviral delivery system for both plasmid DNA and siRNA. While using chitosan/siRNA polyplexes to knock down specific targets, we have underestimated the effect of nucleic acids binding to chitosan when extracting RNA for subsequent quantitative PCR evaluation of silencing. In vitro transfection using chitosan/siRNA-based polyplexes reveals a very poor recovery of total RNA especially when using low cell numbers in 96 well plates. Here, we describe a method that dramatically enhances RNA extraction from chitosan/siRNA-treated cells by using an enzymatic treatment with a type III chitosanase. We show that chitosanase treatment prior to RNA extraction greatly enhances the yield and the integrity of extracted RNA. This method will therefore eliminate the bias associated with lower RNA yield and integrity when quantifying gene silencing of chitosan-based systems using quantitative real time PCR

    Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery

    Get PDF
    Chitosan, a natural polymer, is a promising system for the therapeutic delivery of both plasmid DNA and synthetic small interfering RNA. Reports attempting to identify the optimal parameters of chitosan for synthetic small interfering RNA delivery were inconclusive with high molecular weight at high amine-to-phosphate (N:P) ratios apparently required for efficient transfection. Here we show, for the first time, that low molecular weight chitosan (LMW-CS) formulations at low N:P ratios are suitable for the in vitro delivery of small interfering RNA. LMW-CS nanoparticles at low N:P ratios were positively charged (ζ-potential ~20 mV) with an average size below 100 nm as demonstrated by dynamic light scattering and environmental scanning electron microscopy, respectively. Nanoparticles were spherical, a shape promoting decreased cytotoxicity and enhanced cellular uptake. Nanoparticle stability was effective for at least 20 hours at N:P ratios above two in a slightly acidic pH of 6.5. At a higher basic pH of 8, these nanoparticles were unravelled due to chitosan neutralization, exposing their polynucleotide cargo. Cellular uptake ranged from 50% to 95% in six different cell lines as measured by cytometry. Increasing chitosan molecular weight improved nanoparticle stability as well as the ability of nanoparticles to protect the oligonucleotide cargo from nucleases at supraphysiological concentrations. The highest knockdown efficiency was obtained with the specific formulation 92-10-5 that combines sufficient nuclease protection with effective intracellular release. This system attained >70% knockdown of the messenger RNA, similar to commercially available lipoplexes, without apparent cytotoxicity. Contrary to previous reports, our data demonstrate that LMW-CS at low N:P ratios are efficient and nontoxic polynucleotide delivery systems capable of transfecting a plethora of cell lines

    Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants: Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants

    Get PDF
    Introduction Since its development by Al Wolf and colleagues in the 1970s1, [11C]cyanide has been a useful synthon for a wide variety of reactions, most notably those producing [1-11C]-labeled amino acids2. However, despite its position as rote gas-phase product, the catalytic synthesis is difficult to optimize and often only perfunctorily dis-cussed in the radiochemical literature. Recently, [11C]CN– has been used in the synthesis of indole-3-[1-11C]acetic acid ([11C]IAA), the principal phytohormone responsible for a wide variety of growth and development functions in plants3. The University of Wisconsin has expertise in cyclotron production and radiochemistry of 11C and previous experience in the PET imaging of plants4,5. In this abstract, we present work on optimizing [11C]CN– production for the synthesis of [11C]IAA and the PET imaging of auxin transport in living plants. Material and Methods [11C]CH4 was produced by irradiating 270 psi of 90% N2, 10% H2 with 30 µA of 16.1 MeV protons from a GE PETtrace cyclotron. After irradiation, the [11C]CH4 was converted to [11C]CN– by passing through a quartz tube containing 3.0 g of Pt wire and powder between quartz wool frits inside a 800–1000 ˚C Carbolite tube furnace. The constituents and flow rate of the [11C]CH4 carrier gas were varied in an effort to optimize the oven\'s catalytic production of [11C]CN– from CH4 and NH3. The following conditions were investigated: i. Directly flowing irradiated target gas versus trapping, purging and releasing [11C]CH4 from a −178 ˚C HayeSep D column in He through the Pt furnace. ii. Varying the amount of anhydrous NH3 (99.995%) mixed with the [11C]CH4 carrier gas prior to the Pt furnace. Amounts varied from zero to 35 % of gas flow. iii. Varying the purity of the added NH3 gas with the addition of a hydride gas purifier (Entegris model 35KF), reducing O2 and H2O impurities to < 12 ppb. iv. Varying the flow rate of He gas carrying trapped, purged and released [11C]CH4. After flowing through the Pt furnace, the gas stream was bubbled through 300 µL of DMSO containing IAA precursor gramine (1 mg), then passed through a 60×5 cm column containing ascarite to absorb [11C]CO2, followed by a −178˚C Porapak Q column to trap [11C]CH4 and [11C]CO. After bubbling, the DMSO/gramine vial was heated to 140 ˚C to react the gramine with [11C]CN–, forming the intermediate indole-3-[1-11C]acetonitrile ([11C]IAN), which was subsequently purified by solid phase extraction (SPE). The reaction mixture was diluted into 20 mL water and loaded onto a Waters Sep-Pak light C18 cartridge, followed by rinsing with 5 mL of 0.1% HCl : acetonitrile (99 : 1) and 10 mL of the same mixture in ratio 95 : 5, and finally eluted with 0.5 mL of diethyl ether. The ether was subsequently evaporated under argon flow, followed by the hydrolysis of [11C]IAN to [11C]IAA with the addition of 300 µL 1 M NaOH and heating to 140 ˚C for 5 minutes. After hydrolysis, the solution was neutralized with 300 µL 1 M HCl and purified using preparative high-performance liquid chromatography (HPLC) using a Phenomenex Luna C18 (10μ, 250×10mm) column with a mobile phase acetonitrile : 0.1% formic acid in H2O (35 : 65) at flow rate of 3 mL/min. The [11C]IAA peak, eluting at 12 minutes, was collected and rotary evaporated to dryness, then again after the addition of 5 mL acetonitrile, followed by its reconstitution in 50 µL of water. Analytical HPLC was performed on the [11C]IAA before and after this evaporation procedure using a Phenomenex Kinetex C18 (2.6μ, 75× 4.6 mm) column with a linear gradient elution over 20 minutes of 10 : 90–30 : 70 (acetonitrile : 0.1% formic acid) at a 1 mL/min flow rate, eluting at 7.6 minutes. The transport of [11C]IAA was monitored following administration through the severed petiole of rapid cycling Brassica oleracea (rcBo) using a Siemens microPET P4 scanner. Transport was compared following administration to the first true leaf versus the final fully formed leaf in plants with and without exposure to the polar auxin transport inhibitor naphthylphthalamic acid (NPA). Results and Conclusion Optimization of the [11C]CN– gas phase chemistry was performed using two key metrics for measuring conversion yield. First is the fraction of total produced radioactivity that trapped in the DMSO/gramine solution (denoted %DMSO), and second, the fraction of DMSO/gramine-trapped activity that was able to react with gramine to form [11C]IAN (denoted %CN–). Under certain conditions, the former of these metrics experienced significant losses due to unconverted [11C]CH4 or through combustion, forming [11C]CO2 or [11C]CO. The latter metric experienced losses due to production of incomplete oxidation products of the CH4-NH3 reaction, such as methylamine. Total [11C]CH4 to [11C]CN– con-version yields is reported by the product of the two metrics. It was initially hypothesized that the irradiation of a 90% N2, 10% H2 target gas would produce sufficient in-target-hot-atom-produced NH3 to convert [11C]CH4 to [11C]CN– in the Pt furnace. However, conversion yields were found to be low and highly variable, with 13 ± 8 % trapping in DMSO/gramine, 9 ± 9 % of which reacted as CN– (n = 15). While in disagreement with previous reports1, this is likely as a result the batch irradiation conditions resulting ammonia losses in the target chamber and along the tubing walls. Yields and reproducibility were improved when combining the target gas with a stream of anhydrous NH3 gas flow with conversion yields reported in TABLE 1. However, these yields remained undesirably low, potentially as a result of the 10% H2 carrier gas having an adverse effect on the oxidative conversion of [11C]CH4 to [11C]CN–. To remedy this, the irradiated target gas was trapped, purged, released in He and combined with NH3 gas before flowing through the Pt furnace. Initial experiments using 99.995% anhydrous NH3 gas resulted in very poor (< 0.1%) [11C]CN– yields as a result of nearly quantitative combustion forming [11C]CO2. Installation of a hydride gas purifier to reduce O2 and H2O impurities in NH3 improved yields for CH4 in He, but did not significantly affect those from [11C]CH4 in N2/H2 target gas. In disagreement with previous reports2, conversion yields were found to be highly sensitive to overall carrier gas flow rate, with lower flow rates giving the best yields, as shown in TABLE 1. Optimization experiments are continuing. The total decay-corrected yield for the 1 hour synthesis of [11C]IAA in 50 µL of water is 2.3 ± 0.7 %, based on the total produced [11C]CH4 with a specific activity ranging from 1–100 GBq/µmol. The principal radiochemical impurity was determined to be indole-3-carboxylic acid. The SPE procedure isolating the [11C]IAN intermediate product was optimized to minimize this impurity in the final sample. After a rapid distribution of the administered [11C]IAA through the cut petiole and throughout the rcBO plant, upward vascular transport of auxin and downward polar auxin transport was visualized through time-activity curves (TACs) of regions of interest along the shoot. Comparison of these TACS with and without exposure to NPA yields insight into the fundamental physiological process of polar auxin transport in plants. In conclusion, the Pt-catalyzed oxidative conversion of [11C]CH4 and NH3 to [11C]CN– is a challenging process to optimize and highly sensitive to carrier gas composition and flow rate. Optimization for our experimental conditions yielded several results which disagreed with previous reports. [11C]IAA produced using [11C]CN– is well suited for PET imaging of polar auxin transport in living plants

    Experience and expectations of patients on weight loss: The Learning Health System Network Experience

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152010/1/osp4364_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152010/2/osp4364.pd

    Timing of Moderate Level Prenatal Alcohol Exposure Influences Gene Expression of Sensory Processing Behavior in Rhesus Monkeys

    Get PDF
    Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections

    Cataclysmic Variables in the First Year of the Zwicky Transient Facility

    Get PDF
    Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3–562 days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation He ii emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way

    Fixed-dose combination bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir-containing regimens for initial treatment of HIV-1 infection: week 144 results from two randomised, double-blind, multicentre, phase 3, non-inferiority trials

    Get PDF
    Background: In the primary week-48 analyses of two phase 3 studies, coformulated bictegravir, emtricitabine, and tenofovir alafenamide was non-inferior to a dolutegravir-containing regimen in treatment-naive people with HIV. We report week-144 efficacy and safety results from these studies. Methods: We did two double-blind, active-controlled studies (now in open-label extension phase). Study 1 randomly assigned (1:1) HLA-B*5701-negative adults without hepatitis B virus co-infection to receive coformulated bictegravir 50 mg, emtricitabine 200 mg, and tenofovir alafenamide 25 mg, or coformulated dolutegravir 50 mg, abacavir 600 mg, and lamivudine 300 mg once daily. Study 2 randomly assigned (1:1) adults to bictegravir, emtricitabine, and tenofovir alafenamide, or dolutegravir 50 mg given with coformulated emtricitabine 200 mg and tenofovir alafenamide 25 mg. We previously reported non-inferiority at the primary endpoint. Here, we report the week-144 secondary outcome of proportion of participants with plasma HIV-1 RNA less than 50 copies per mL at week 144, by US Food and Drug Administration Snapshot algorithm, analysed in the same manner. These studies were registered with ClinicalTrials.gov, NCT02607930 and NCT02607956. Findings: 629 participants were randomly assigned and treated in study 1 (314 to bictegravir, emtricitabine, and tenofovir alafenamide, and 315 to dolutegravir, abacavir, and lamivudine) and 645 in study 2 (327 to bictegravir, emtricitabine, and tenofovir alafenamide, 325 to dolutegravir, emtricitabine, tenofovir alafenamide). At week 144, bictegravir, emtricitabine, and tenofovir alafenamide was non-inferior to both dolutegravir-containing regimens for efficacy. In study 1, 256 (82%) of 314 participants had plasma HIV-1 RNA less than 50 copies per mL in the bictegravir, emtricitabine, and tenofovir alafenamide group and 265 (84%) of 315 in the dolutegravir, abacavir, and lamivudine group (difference −2·6%, 95% CI −8·5 to 3·4). In study 2, 262 (82%) of 320 participants had plasma HIV-1 RNA less than 50 copies per mL in the bictegravir, emtricitabine, and tenofovir alafenamide group and 273 (84%) of 325 in the dolutegravir, emtricitabine, and tenofovir alafenamide group (difference −1·9%, −7·8 to 3·9). In both studies, no participant had treatment-emergent resistance to study drugs up to week 144. All treatment regimens were well tolerated with additional exposure. Adverse events that led to study drug discontinuation were reported for no participants in the bictegravir, emtricitabine, and tenofovir alafenamide group versus five (2%) of 315 in the dolutegravir, abacavir, and lamivudine group (study 1), and six (2%) of 320 in the bictegravir, emtricitabine, and tenofovir alafenamide versus six (2%) of 325 in the dolutegravir, emtricitabine, and tenofovir alafenamide group (study 2). In study 1, statistically significant differences were observed in median changes from baseline in fasting total cholesterol (14 mg/dL vs 10 mg/dL; p=0·034), direct LDL (21 mg/dL vs 14 mg/dL; p=0·004), and total cholesterol to HDL ratio (−0·1 vs −0·3; p=0·007) at week 144; no differences were observed between groups in study 2. Weight gain was seen across all treatment groups in both studies, with no differences in median changes from baseline in weight at week 144 for either study. Interpretation: These long-term data support the use of bictegravir, emtricitabine, and tenofovir alafenamide as a safe, well tolerated, and durable treatment for people with HIV, with no emergent resistance. Funding: Gilead Sciences. © 2020 Elsevier Lt

    Clinical use of HIV integrase inhibitors : a systematic review and meta-analysis

    Get PDF
    Background: Optimal regimen choice of antiretroviral therapy is essential to achieve long-term clinical success. Integrase inhibitors have swiftly been adopted as part of current antiretroviral regimens. The purpose of this study was to review the evidence for integrase inhibitor use in clinical settings. Methods: MEDLINE and Web-of-Science were screened from April 2006 until November 2012, as were hand-searched scientific meeting proceedings. Multiple reviewers independently screened 1323 citations in duplicate to identify randomized controlled trials, nonrandomized controlled trials and cohort studies on integrase inhibitor use in clinical practice. Independent, duplicate data extraction and quality assessment were conducted. Results: 48 unique studies were included on the use of integrase inhibitors in antiretroviral therapy-naive patients and treatment-experienced patients with either virological failure or switching to integrase inhibitors while virologically suppressed. On the selected studies with comparable outcome measures and indication (n = 16), a meta-analysis was performed based on modified intention-to-treat (mITT), on-treatment (OT) and as-treated (AT) virological outcome data. In therapy-naive patients, favorable odds ratios (OR) for integrase inhibitor-based regimens were observed, (mITT OR 0.71, 95% CI 0.59-0.86). However, integrase inhibitors combined with protease inhibitors only did not result in a significant better virological outcome. Evidence further supported integrase inhibitor use following virological failure (mITT OR 0.27; 95% CI 0.11-0.66), but switching to integrase inhibitors from a high genetic barrier drug during successful treatment was not supported (mITT OR 1.43; 95% CI 0.89-2.31). Integrase inhibitor-based regimens result in similar immunological responses compared to other regimens. A low genetic barrier to drug-resistance development was observed for raltegravir and elvitegravir, but not for dolutegravir. Conclusion: In first-line therapy, integrase inhibitors are superior to other regimens. Integrase inhibitor use after virological failure is supported as well by the meta-analysis. Careful use is however warranted when replacing a high genetic barrier drug in treatment-experienced patients switching successful treatment
    corecore