29 research outputs found

    Haploinsufficiency of Activation-Induced Deaminase for Antibody Diversification and Chromosome Translocations both In Vitro and In Vivo

    Get PDF
    The humoral immune response critically relies on the secondary diversification of antibodies. This diversification takes places through somatic remodelling of the antibody genes by two molecular mechanisms, Class Switch Recombination (CSR) and Somatic Hypermutation (SHM). The enzyme Activation Induced Cytidine Deaminase (AID) initiates both SHM and CSR by deaminating cytosine residues on the DNA of immunoglobulin genes. While crucial for immunity, AID-catalysed deamination is also the triggering event for the generation of lymphomagenic chromosome translocations. To address whether restricting the levels of AID expression in vivo contributes to the regulation of its function, we analysed mice harbouring a single copy of the AID gene (AID+/−). AID+/− mice express roughly 50% of normal AID levels, and display a mild hyperplasia, reminiscent of AID deficient mice and humans. Moreover, we found that AID+/− cells have an impaired competence for CSR and SHM, which indicates that AID gene dose is limiting for its physiologic function. We next evaluated the impact of AID reduction in AID+/− mice on the generation of chromosome translocations. Our results show that the frequency of AID-promoted c-myc/IgH translocations is reduced in AID+/− mice, both in vivo and in vitro. Therefore, AID is haploinsufficient for antibody diversification and chromosome translocations. These findings suggest that limiting the physiologic levels of AID expression can be a regulatory mechanism that ensures an optimal balance between immune proficiency and genome integrity

    miR-181b negatively regulates activation-induced cytidine deaminase in B cells

    Get PDF
    Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3′ untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation

    The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression

    Get PDF
    AbstractThe open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties

    miR-28 regulates the germinal center reaction and blocks tumor growth in preclinical models of non-Hodgkin lymphoma

    Get PDF
    Non-Hodgkin lymphoma comprises a variety of neoplasms, many of which arise from germinal center (GC)-experienced B cells. microRNA-28 (miR-28) is a GC-specific miRNA whose expression is lost in numerous mature B-cell neoplasms. Here we show that miR-28 regulates the GC reaction in primary B cells by impairing class switch recombination and memory B and plasma cell differentiation. Deep quantitative proteomics combined with transcriptome analysis identified miR-28 targets involved in cell-cycle and B-cell receptor signaling. Accordingly, we found that miR-28 expression diminished proliferation in primary and lymphoma cells in vitro. Importantly, miR-28 reexpression in human Burkitt (BL) and diffuse large B-cell lymphoma (DLBCL) xenografts blocked tumor growth, both when delivered in viral vectors or as synthetic, clinically amenable, molecules. Further, the antitumoral effect of miR-28 is conserved in a primary murine in vivo model of BL. Thus, miR-28 replacement is uncovered as a novel therapeutic strategy for DLBCL and BL treatment.This work was supported by a Ministerio de Economia y Competitividad's research training program (Formacion de Personal Investigador [FPI]) fellowship (N.B.-I.); the Ramon y Cajal program (RYC-2009-04503) funded by the Ministerio de Educacion, Cultura y Deporte and the European Research Council Proof of Concept program (HEAL-BY-MIRNA 713728) (V.G.d.Y.); the Centro Nacional de Investigaciones Cardiovaculares (CNIC) (A.F.A.-P., S.M.M., A.R.R.); the Ministerio de Economia y Competitividad (SAF2010-21394, SAF2013-42767-R), the European Research Council Starting Grant program (BCLYM-207844), and Proof of Concept program (HEAL-BY-MIRNA 713728) (A.R.R.); the People Programme-Marie Curie Actions (FP7-PIIF-2012-328177), Spanish Ministry of Economy and Competitiveness (MINECO; SAF2013-45787-R), and Gobierno de Navarra (GN-106/2014) (S.R.); and the Ministerio de Economia y Competitividad (BIO2012-37926 and BIO2015-67580-P), Instituto de Salud Carlos III (Fondo de Investigacion Sanitaria [FIS] grants PRB2 [IPT13/0001, Proteo-Red], the Fundacion La Marato TV3, and Redes tematicas de investigacion cooperativa en salud [RETICS] [RD12/0042/00056, RIC]) (J.V.). This work has been cofunded by Fondo Europeo de Desarrollo Regional (FEDER) funds. The CNIC is supported by the and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505).S

    Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production

    Get PDF
    Intercellular communication orchestrates effective immune responses against disease-causing agents. Extracellular vesicles (EVs) are potent mediators of cell-cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T-B lymphocyte immune contacts promotes transfer of a very restricted set of T-cell EV-microRNAs (mmu-miR20-a-5p, mmu-miR-25-3p, and mmu-miR-155-3p) to the B cell. Transferred EV-microRNAs target key genes that control B-cell function, including pro-apoptotic BIM and the cell cycle regulator PTEN. EV-microRNAs transferred during T-B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV-deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B-cell responses via the transfer of EV-microRNAs of T-cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune-related and inflammatory disorders.This manuscript was funded by grants SAF2017-82886-R (FS-M) from the Spanish Ministry of Economy and Competitiveness; CAM (S2017/BMD-3671-INFLAMUNE-CM) from the Comunidad de Madrid (FS-M); CIBERCV (CB16/11/00272), BIOIMID PIE13/041 from the Instituto de Salud Carlos III and from the Fundación La MaratóTV3(grant122/C/2015). The current research has received funding from “la Caixa” Foundation under the project code HR17-00016. VGY is supported by the AECC foundation. A.R.R. is supported by CNIC funding. This project was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades SAF2016-75511-R, and La Caixa Health Research Program HR17-00247 grant to A.R.R. Grants from Ramón Areces Foundation “Ciencias de la Vida y de la Salud” (XIX Concurso-2018) and from Ayuda Fundación BBVA y Equipo de Investigación Científica (BIOMEDICINA-2018) (to FSM). The CNIC is supported by the Ministerio de Ciencia, Innovacion y Universidades and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    miR-217 is an oncogene that enhances the germinal center reaction.

    Get PDF
    microRNAs are a class of regulators of gene expression that have been shown critical for a great number of biological processes; however, little is known of their role in germinal center (GC) B cells. Although the GC reaction is crucial to ensure a competent immune response, GC B cells are also the origin of most human lymphomas, presumably due to bystander effects of the immunoglobulin gene remodeling that takes place at these sites. Here we report that miR-217 is specifically upregulated in GC B cells. Gain- and loss-of-function mouse models reveal that miR-217 is a positive modulator of the GC response that increases the generation of class-switched antibodies and the frequency of somatic hypermutation. We find that miR-217 down-regulates the expression of a DNA damage response and repair gene network and in turn stabilizes Bcl-6 expression in GC B cells. Importantly, miR-217 overexpression also promotes mature B-cell lymphomagenesis; this is physiologically relevant as we find that miR-217 is overexpressed in aggressive human B-cell lymphomas. Therefore, miR-217 provides a novel molecular link between the normal GC response and B-cell transformation.S

    MYC directly transactivates CR2/CD21, the receptor of the Epstein-Barr virus, enhancing the viral infection of Burkitt lymphoma cells.

    Get PDF
    MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.S

    In vivo conditional deletion of HDAC7 reveals its requirement to establish proper B lymphocyte identity and development

    Get PDF
    Class IIa histone deacetylase (HDAC) subfamily members are tissue-specific gene repressors with crucial roles in development and differentiation processes. A prominent example is HDAC7, a class IIa HDAC that shows a lymphoid-specific expression pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a conditional knockout mouse model. Our study demonstrates for the first time that HDAC7 deletion dramatically blocks early B cell development and gives rise to a severe lymphopenia in peripheral organs, while also leading to pro-B cell lineage promiscuity. We find that HDAC7 represses myeloid and T lymphocyte genes in B cell progenitors through interaction with myocyte enhancer factor 2C (MEFC2). In B cell progenitors, HDAC7 is recruited to promoters and enhancers of target genes, and its absence leads to increased enrichment of histone active marks. Our results prove that HDAC7 is a bona fide transcriptional repressor essential for B cell development

    Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction.

    Get PDF
    microRNAs are master regulators of gene expression with essential roles in virtually all biological processes. miR-217 has been associated with aging and cellular senescence, but its role in vascular disease is not understood. Approach and Results: We have used an inducible endothelium-specific knock-in mouse model to address the role of miR-217 in vascular function and atherosclerosis. miR-217 reduced NO production and promoted endothelial dysfunction, increased blood pressure, and exacerbated atherosclerosis in proatherogenic apoE-/- mice. Moreover, increased endothelial miR-217 expression led to the development of coronary artery disease and altered left ventricular heart function, inducing diastolic and systolic dysfunction. Conversely, inhibition of endogenous vascular miR-217 in apoE-/- mice improved vascular contractility and diminished atherosclerosis. Transcriptome analysis revealed that miR-217 regulates an endothelial signaling hub and downregulates a network of eNOS (endothelial NO synthase) activators, including VEGF (vascular endothelial growth factor) and apelin receptor pathways, resulting in diminished eNOS expression. Further analysis revealed that human plasma miR-217 is a biomarker of vascular aging and cardiovascular risk. Our results highlight the therapeutic potential of miR-217 inhibitors in aging-related cardiovascular disease.V.G. de Yébenes was supported by Ramón y Cajal grant RYC-2009-04503 and AECC foundation grant INVES18013GARC and by the Universidad Complutense de Madrid. S.M. Mur and A.R. Ramiro are supported by Centro Nacional de Investigaciones Cardiovasculares (CNIC) funding. A.R. Ramiro was supported by the Spanish Ministerio de Ciencia e Innovación (PID2019-107551RB-I00), the Spanish Ministerio de Economía, Industria y Competitividad (SAF2013-42767-R and SAF2016-75511-R), and the European Research Council StG BCLYM. M. Salaices was supported by the Ministerio de Ciencia e Innovación (SAF2016-80305P) and with J. Miguel Redondo by Instituto de Salud Carlos III (CIBER de Enfermedades Cardiovasculares, CB16/11/00286 and CB16/11/00264) and Comunidad de Madrid (B2017/BMD-3676). V.G. de Yébenes was supported by Ministerio de Ciencia e Innovación (PID2019-107551RB-I00). Further support was provided by the European Social Fund and the European Regional Development Fund “A Way to Build Europe.” The CNIC is supported by Ministerio de Ciencia, Innovacion y Universidades, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    microRNA Fine-Tuning of the Germinal Center Response.

    Get PDF
    Germinal centers (GCs) are complex multicellular structures in which antigen-specific B cells undergo the molecular remodeling that enables the generation of high-affinity antibodies and the differentiation programs that lead to the generation of plasma-antibody-secreting cells and memory B cells. These reactions are tightly controlled by a variety of mechanisms, including the post-transcriptional control of gene expression by microRNAs (miRNAs). Through the development of animal models with B cell-specific modified miRNA expression, we have contributed to the understanding of the role of miRNAs in the regulation of GC responses and in B cell neoplasia. Here, we review recent advances in the understanding of the role of miRNAs in the regulation of B cell and T follicular helper physiology during the GC response and in the diseases associated to GC response dysregulation.Our work is supported by the Spanish Ministerio de Ciencia e Innovación (PID2019-107551RB-I00). TF is supported by a PhD fellowship from the Spanish Ministerio de Ciencia, Innovacion y Universidades (BES-2017-079759), VY by funding from the Universidad Complutense de Madrid, and IS by a student research grant from the Ministerio de Educación y Formación Profesional.S
    corecore