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miR-28 regulates the germinal center reaction and blocks tumor growth
in preclinical models of non-Hodgkin lymphoma
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Key Points

• miR-28 is a regulator of the
GC reaction that dampens
B-cell receptor signaling and
impairs B-cell proliferation
and survival.

• miR-28 has antitumoral
activity in BL and DLBCL.

Non-Hodgkin lymphoma comprises a variety of neoplasms, many of which arise from

germinal center (GC)-experienced B cells. microRNA-28 (miR-28) is a GC-specific

miRNA whose expression is lost in numerous mature B-cell neoplasms. Here we

show that miR-28 regulates the GC reaction in primary B cells by impairing class

switch recombination and memory B and plasma cell differentiation. Deep quantitative

proteomics combined with transcriptome analysis identified miR-28 targets involved in

cell-cycle and B-cell receptor signaling. Accordingly, we found that miR-28 expression

diminished proliferation in primary and lymphoma cells in vitro. Importantly, miR-28

reexpression in human Burkitt (BL) and diffuse large B-cell lymphoma (DLBCL)

xenografts blocked tumor growth, both when delivered in viral vectors or as synthetic,

clinically amenable, molecules. Further, the antitumoral effect of miR-28 is conserved in a primary murine in vivo model of BL. Thus,

miR-28 replacement is uncovered as a novel therapeutic strategy for DLBCL and BL treatment. (Blood. 2017;129(17):2408-2419)

Introduction

Mature B-cell lymphomas account for the vast majority of non-
Hodgkin lymphomas (NHLs), whose incidence has steadily increased
over the past decades. Almost 400 000 new NHL cases are diagnosed
andmore than200 000people are estimated todie everyyear fromNHL
worldwide (data fromCancerResearchUK).More than60%of casesof
mature B-cell lymphomas are aggressive, fast-growing subtypes and
include diffuse largeB-cell lymphomas (DLBCL; 30%of allNHL) and
Burkitt lymphoma (BL)/leukemia (2.5% of all NHL).1 Althoughmany
aggressive B-cell lymphomas can be cured with current therapies—
most commonly, doxorubicin-based combination chemotherapy with
rituximab—these are highly intensive treatments, often requiring
hospitalization. Moreover, almost half of DLBCL and BL cases are
resistant to these approaches or relapsewithin 5 years of treatment.2 It is
therefore crucial to identify new therapeutic strategies that are more
effective and less toxic than current antilymphoma therapies.

Mature B-cell lymphomas originate from mature B cells that have
germinal center (GC) experience.GCs are transientmicrostructures that
develop in secondary lymphoid organs in response toT cell–dependent
antigens and serve to generate high-affinity plasma cells and long-lived
memory B cells.3 Within GCs, B cells somatically remodel their
antibodygenes through somatic hypermutation (SHM)andclass switch
recombination (CSR), which enable the generation of higher affinity
antibodies harboring specialized effector functions. Both SHM and
CSR are initiated by activation induced deaminase (AID) through

deaminationofcytosineson the Ig loci.4,5AIDgenotoxicactivityprovides
1 direct link between the GC reaction, the generation of lymphomagenic
chromosome translocations and the propensity of mature B cells for
oncogenic transformation.6-8

Antibody affinity is improved in GCs through iterative rounds of
selection of variants generated by SHM, a process called affinity
maturation.3 Thus, B cells in which SHM gives rise to a B-cell receptor
(BCR) with increased affinity for antigen outcompete lower affinity
B cells and are selected to proliferate further. In contrast, B cells inwhich
SHM impairs BCR expression or significantly reduces antigen affinity
are not rescued for further differentiation; therefore, Ig gene remodeling
in GC B cells is intimately coupled to intense proliferation and
programmed cell death, events critically dictated by BCR signaling.
Human malignant B cells typically maintain surface BCR expression,
suggesting that they may use the ability of the BCR to engage
downstream proliferation and survival pathways. Likewise, gain-of-
function mutations affecting BCR signaling pathways are very
common in B-cell lymphoma.1,9

B-cell lymphomagenesis is also influenced by regulators of the GC
gene expression program. Mice lacking the transcriptional repressor
Bcl-6 are unable to form GCs or produce high-affinity antibodies10;
conversely, mice constitutively expressing Bcl-6 in B cells develop a
B-cellmalignancy that recapitulatesDLBCL.11Lymphomagenesis is also
promoted by transgenic overexpression of miR-155 and miR-217.12,13
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In recent years,microRNA (miRNA)-based therapeutics for cancer
treatment has stirred a lot of interest. miRNAs negatively regulate the
expressionof genenetworks through imperfect base-pair binding to the
39UTR of target messenger RNAs (mRNAs). Many human miRNAs
are located in cancer-associated genomic regions,14 and dysregulated
miRNAs contribute, as oncogenes (oncomiRs) or tumor suppressors,
to the tumorigenic process of numerous cancers, including lymphomas
(reviewed in Adams et al,15 Schmidt and Küppers,16 and de Yébenes
et al17). These unique features of miRNAs may provide novel targets
for antitumor therapy (reviewed in Taylor and Schiemann18 and
Nana-Sinkam and Croce19).

Here we have characterized miR-28, a GC-specific miRNA fre-
quently lost duringB-cell transformation.Our results show thatmiR-28
regulates the GC reaction, hindering B-cell proliferation and survival.
We show that reexpression of miR-28 impairs tumor growth in several
lymphoma models, demonstrating the feasibility of miR-28 replace-
ment for the treatment of B-cell NHL.

Methods

Expression constructs and transductions

miR-28 retroviral overexpression and sponge inhibition were performed as
previously described13,20 (see supplemental Data, available on the Blood Web
site). For lentiviral constructs, themiR-28precursor sequencewas cloned into the
pTRIPZ vector (Thermo Scientific).

miR-28 detection by qRT-PCR

Total RNAwas extractedwith Trizol (Invitrogen) andmiR-28-5pwasmeasured
byquantitative reverse transcriptionpolymerase chain reaction (qRT-PCR)using
miR-28 miRCURY LNA primers (Exiqon). U6 amplification was used as a
normalization control. Reactions were performed in a 7900HT fast real-time
PCR thermocycler (Applied Biosystems).

RNA and multiplexed isobaric labeling analysis

Ramos cells transducedwithmiR-28 or scrambled pTRIPZ vectors were selected
with puromycin (0.4 mg/mL) and induced for 2 days with doxycycline (Dox)
(0.5mg/mL); redfluorescentprotein1(RFP1) cellswere isolatedwithafluorescence-
activated cell sorter (FACS) Aria cell sorter and subjected to quantitative
transcriptome and proteomic analysis (supplemental Materials and methods).

Lymphoma models

Forsubcutaneousxenografts, 2-103106Ramoscellswere resuspended in100mL
phosphate-buffered saline, mixed with 100 mLMatrigel (BD Biosciences) and
injected into nonobese diabetic severe combined immunodeficiency g (NSG)
mice (8-14weeks old).When transduced cellswere used,Dox (Sigma-Aldrich)
was administered at 0.04% in the drinking water. To establish subcutaneous
l/MYC transgenic (l-MYC) primary tumors, enlarged lymph nodes were
extracted from 4-to-8-month-old sick l-MYC animals, and 107 cells were
subcutaneously injected into the flanks of NSG mice. Subcutaneous tumor
volumewasmeasured3 timesperweekwithadigital caliper using the following
formula: volume5 (width)23 length/2. For the systemicmodel ofBL, 23106

primary lymphomacells froml-MYCmicewere IV injected into the tail vein of
receptor NSG mice.

B-cell lymphoma treatment with miR-28 mimic

miRNA mimics for miR-28 or control were purchased from Ambion. For
intratumor administration, established tumors were injected with 0.1 or
0.5 nmol miRNA mimics together with Invivofectamine (Ambion) 3 times,
separated by 3 to 4 days. For intravenous administration, mice with established
tumors were injected twice with 7 nmol miRNA mimics, with injections
separated by 4 days.

Results

miR-28 regulates the GC reaction

miR-28 is expressed in mouse and human GC B cells21,22; however, its
role in the GC reaction remains unknown. We measured miR-28
expression by qRT-PCR in naı̈ve B cells (CD191GL72), GC B cells
(CD191GL71), and post-GC B cells (CD191GL72IgA1) isolated from
Peyer’s patches (gating strategy shown in supplemental Figure 1A); we
found that miR-28 expression sharply increased in GC B cells and
declined soonafterward inpost-GCcells (Figure1A, top).Likewise,miR-
28expressionprogressively increasesduring theGCreaction,asmeasured
in splenic GC B cells of mice immunized with sheep red blood cells
(Figure 1A, bottom; gating strategy shown in supplemental Figure 1B).
However, we did not detect significant differences in miR-28 expression
between light zoneanddarkzoneGCBcells (supplementalFigure1C-D).

To investigate the functional relevance of miR-28 expression in GC
B cells, we isolated naı̈ve B cells from mouse spleens, cultured them
in the presence of lipopolysaccharide and interleukin-4 (IL-4), and
transduced them with miR-28 or control retroviruses (quantification
of miR-28 expression shown in supplemental Figure 1E). miR-28
expression decreased the proportion of cells undergoing CSR and the
proliferation rate (Figure 1B).Wenext generated loss-of-functionmouse
models using a miR-28 sponge construct (miR-28 SPG) (supplemental
Figure 1F), which inhibits miR-28 activity by competing for binding to
endogenous miR-28 binding sites23 (supplemental Figure 1G). Bone
marrowcellswere transducedwithmiR-28SPGor control retrovirus and
transferred to lethally irradiated isogenic recipient mice. Reconstituted
mice were immunized with a T cell–dependent antigen and analyzed 10
to 14 days later. Compared with control chimeras, immunized miR-28
SPGchimeras tended tohavehigher proportionsofGCcells (Fas1GL71;
Figure 1C, top) and had significantly increased proportions of plasma
cells (CD1381; Figure 1C, bottom). To specifically track GC-derived
memory B cells and plasma cells, we performed miR-28 SPG
experiments using as donors bone marrow cells from a reporter mouse,
in which the expression of Tomato fluorescent protein is irreversibly
turned on by AID expression. We found that miR-28 SPG promotes an
increase in the proportion of both immunoglobulin G11 (IgG11) and
IgG12 memory B cells and an increase in GC-derived plasma cells
(Figure 1D). Although conditionally deficient mouse models would be
required to unambiguously demonstrate that this is an intrinsic B-cell
phenotype, our combined gain-and-loss-of function data indicate that
miR-28 is a regulator of the GC reaction.

miR-28 is downregulated in GC-derived neoplasms

miRNA profiling in an extensive dataset of human primary GC-derived
B-cell neoplasms (GSE 2949324) revealed that miR-28 expression is lost
in several GC-derived lymphoma subtypes, including BL, DLBCL and
follicular lymphoma, and chronic lymphocytic leukemia (CLL)
(Figure 2A). miR-28 downregulation is also a common event in
established GC-derived B-cell lines, such as the Ramos and Raji BL
cell lines and the MD901 DLBCL cell line (supplemental Figure 2A).
These data are consistent with previous reports showing reduced
miR-28 expression in various B-cell lymphoma subtypes25,26 and
show that loss of miR-28 expression is very frequently associated with
GC B-cell transformation, suggesting a possible tumor suppressor
role for miR-28 in mature B-cell lymphomas and leukemia.

Transcriptome and proteome profiling of miR-28 targets

To accurately identify the genes regulated by miR-28 in B cells, we
performed combined transcriptome and proteome analysis upon
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inducible reexpression of miR-28 in the Ramos human BL cell line,
where miR-28 expression is much lower than in normal GC B cells
(supplemental Figure 2A). miR-28 was transduced along with RFP
in a Dox-inducible lentiviral vector, which promoted roughly a 40-
fold increase ofmiR-28 levels, but did not affect the expression levels
of other miRNAs (supplemental Figure 2B). RFP1 cells were
subjected to RNA sequencing (RNA-Seq) analysis for transcriptome
profiling and to deep quantitative proteomics using multiplexed
isobaric labeling (iTRAQ) (complete lists of products identified by
RNA-Seq and iTRAQ can be found in supplemental Tables 1 and 2).
RNA-Seq analysis revealed thatmiR-28 induced expression changes
in 1202 transcripts (P , .05), 568 of which were downregulated
(Figure 2B).We found a significant correlation between this group of
downregulated mRNAs and those reported in a previous study for a
different cell line25 (supplemental Figure 3; thresholds log2 fold
change ,20.4 or .10.4). In addition, gene set enrichment
analysis27 showed that computer-predicted miR-28 targets were
significantly enriched in transcripts downregulated by miR-28
(Figure 2C) (P5 .004; normalized enrichment score (NES)521.42).
miR-28–induced downregulation was validated by qRT-PCR for
CD44, CCDC50, CELSR3, VAV3, FOSB, and JAK3 (Figure 2D).
iTRAQ analysis allowed quantification of more than 7000 proteins,
revealingmiR-28–inducedchanges in 277proteins (10%false discovery
rate [FDR], P, .0038,), 171 of which were downregulated (Figure 2B,
right). Importantly, we found a consistent sign of expression change
induced by miR-28 at the transcriptome and proteome levels (FDR
,10% for proteins, P, .05 for mRNAs; supplemental Figure 4).

Pathway enrichment analysis revealed that miR-28–induced
transcriptome and proteome changes grouped in remarkably similar
cellular function pathways (Figure 2E), and a class-scoring algorithm
that identifies alterations in functional categories28 showed that miR-
28 expression in Ramos BL cells induces the coordinated down-
regulation of proteins belonging to cell-cycle progression pathways
(Figure 2F). Finally, ingenuity pathway analysis showed that proteins
whose levels are altered by miR-28 form a highly significant
cluster of genes involved in BCR signaling. This gene network
contains 4 main hubs—BCR, phosphatidylinositol 3-kinase, AKT,
and extracellular signal-regulated kinase 1/2 (ERK1/2)—which
play pivotal roles in B-cell biology and regulate the induction of
cell-cycle and apoptosis regulatory molecules such as CDC6,
CDC25C, TNFSF11, and ILF3 (Figure 2G). These results thus
suggest that reintroducing miR-28 into lymphoma cells affects the
signaling network emanating from the BCR.

miR-28 dampens BCR signaling and impairs B-cell proliferation

and survival

To assess the functional impact of miR-28 on BCR signaling, we
quantified the phosphorylated active forms of AKT (p-AKT) and ERK
(p-ERK). BL cells transduced with miR-28 tended to have lower

p-ERK levels and had significantly lower phosphorylation of AKT-
S473 (34% below control cells, P5 .02) than control-transduced cells
(Figure 3A). Moreover, miR-28–transduced BL cells stimulated with
anti-IgMhad lower levels ofp-AKT thancontrols (Figure 3B) (P5 .04),
indicating that miR-28 expression dampens BCR signaling in BL cells.

Next, we examined our RNA-Seq data for alterations in other
miR-28–regulated BCR-related pathway components, focusing
on NFKB2, IKKB, and BCL2. NFKB2 and IKKB are components
of the NF-kB pathway, a major survival pathway downstream of
the BCR and the most commonly altered gene pathway in
lymphoid malignancies. Bcl-2 is an antiapoptotic protein induced
by the BCR, and genetic gain-of-function BCL2 alterations are
found in various mature B-cell malignancies. NFKB2, IKKB, and
BCL2 were all downregulated in miR-28–expressing Ramos BL
cells (supplemental Table 1; Figure 3C) and their expression
correlated inversely with miR-28 expression in primary GC-
derived lymphoma of the ABC-DLBCL subtype (Figure 3D) (data
extracted from Iqbal et al26), which is known to specifically rely on
chronic active BCR signaling for survival.29 Overall, these results show
thatmiR-28expressiondownregulates downstream effectors of BCR
signaling, which play key roles in B-lymphocyte proliferation and
survival, and whose expression is frequently upregulated inGC-derived
malignancies.

To examine whether miR-28 expression regulates cell cycle and
survival, wefirst expressedmiR-28 in different humanB-cell lympho-
mas and found that it reduced cell numbers in the MD901 ABC-
DLBCL cell line and in Raji and Ramos BL cell lines, (Figure 3E),
which is consistent with recent observations in other BL cell lines.25

To further expand these findings to primary B cells, we measured cell
division in response toBCRstimulation.We found that spleen primary
B cells transduced with miR-28 proliferated less than control B cells
(Figure 3F). In addition, miR-28–expressing Ramos cultures
contained a significantly lower proportion of proliferating cells than
RFP1 control-transduced cultures (Figure 3G). miR-28 reexpression in
BL cells also significantly increased apoptotic cell death (Figure 3H-
I). Together, these results show that miR-28 expression impairs the
proliferation and survival of both primary and tumor B lymphocytes
most likely by dampening BCR signaling.

miR-28 suppresses tumor growth in GC-derived neoplasms

Toassess the tumor suppressor activityofmiR-28 invivo,wefirstmade
use of xenograft models. Ramos cells were transduced with miR-28
or scramble lentiviral vectors, induced with Dox, and miR-28 RFP1

or control RFP1 lymphoma cells were injected subcutaneously into either
flank of NSG mice (supplemental Figure 5). miR-28 expression
significantly slowed the growth of xenograft tumors (Figure 4A)
and markedly reduced tumor mass at end point (Figure 4B).
miR-28–expressing Ramos BL tumors also contained fewer Ki671

Figure 1. miR-28 regulates the GC reaction. (A) miR-28 expression was assessed by qRT-PCR in naı̈ve B cells (CD191GL72IgA2), GC B cells (CD191GL71), and

switched B cells (post-GC, CD191GL72IgA1) from Peyer’s patches (top) (n 5 2) and in spleen GC B cells (CD191Fas1GL71) on the indicated days after immunization of

C57/BL mice with sheep red blood cells (bottom) (n 5 2) (gating strategy is shown in supplemental Figure 1A-B). (B) Spleen B cells were labeled with violet cell tracer,

stimulated with lipopolysaccharide and IL-4, and transduced with control or pre-miR-28–containing retroviral constructs. CSR to IgG1 was assessed by FACS analysis of

GFP1 cells 3 days after transduction. Left, representative FACS plot; right, quantification (n 5 5). Lower panels: number of cell divisions was quantified with cell tracer by

FACS analysis 3 days after transduction. Left, representative histogram (open line, control-transduced cells; shaded histogram, miR-28–transduced cells). Number of cell

divisions is indicated. Right, quantification (n5 5). (C-D) Mouse chimeras transplanted with bone marrow cells transduced with miR-28 SPG or empty vector were analyzed by

FACS 10 to 14 days after immunization. (C) Left, representative plots of GC (top) and plasma (bottom) cells; right, quantifications after normalization to the mean of control

mice in each individual experiment. Phosphate-buffered saline (PBS): nonimmunized chimeric mice. Analyses were performed gating on CD45.11 GFP1 cells. Data are from

6 (GC) and 4 (plasma cell) independent transplantation and immunization experiments. (D) miR-28 SPG or empty vector chimeras were generated using bone marrow cells

from R26-Tomatoki/1; AIDCreki/1 mice to track GC-experienced cells. Left, representative plots of Tomato1IgG11 and Tomato1IgG12 memory and Tomato1 CD1381 plasma

B cells are shown; right, quantifications. Analyses were performed gating on Tmt1 GFP1 cells. Data are from 2 independent transplantation and immunization experiments.

Each symbol (C-D) represents an individual mouse. *P , .05, **P , .01, unpaired Student t test (A-D).
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proliferating cells and Bcl-2–expressing cells and had a higher
proportion of apoptotic active caspase 31 cells (Figure 4C).
These findings indicate that miR-28 reexpression impairs pro-
liferation and survival of lymphoma cells. In a further test, we found

that miR-28 reexpression in xenograft assays reduced tumor growth
of an additional BL lymphoma cell line (Raji) and ABC-DLBCL
(MD901) (Figure 4D), demonstrating that miR-28 antitumoral
activity is not restricted to a single lymphoma type. These results
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Figure 3. miR-28 regulates proliferation and cell death in lymphoma B cells by dampening the BCR signaling pathway. (A) Extracts of RFP1 Ramos BL cells,

transduced with control or pre-miR-28–containing retroviral constructs, were immunoblotted with antibodies to phospho-ERK1/2 (T202/Y204), ERK1/2, and phospho-AKT

(S473). Numbers beneath the bands show protein quantification after normalization to the a-tubulin loading control signal. Bar graphs on the right show data from

2 independent experiments. (B) AKT phosphorylation was measured by flow cytometry after anti-IgM stimulation of RFP1 Ramos cells expressing miR-28 (blue shaded

histogram) or scramble RNA (red open histogram). The panel shows representative flow cytometry plots (top) and quantification of 4 independent experiments after

normalization to controls (bottom). MFI, mean fluorescence intensity. *P , .05, unpaired Student t test. (C) qRT-PCR of Bcl-2, NFKB2, and IKKB in miR-28 vs control Ramos

RFP1 BL cells (n 5 3). (D) Graphs show miR-28 expression plotted against transcript levels of NFKB2, IKKB, and BCL2 in human primary ABC-DLBCL lymphoma cohorts

(data extracted from Iqbal et al26). R2 and P values are shown. (E) The MD-901 ABC-DLBCL cell line and the Raji and Ramos BL cell lines were transduced with pTRIPZ

vectors encoding miR-28 (blue circles) or scramble RNA (red circles). RFP1 cells were cultured and counted every day throughout the culture period. Data are from at least 2

independent experiments. *P , .05, unpaired Student t test. (F) Primary splenic B cells were labeled with violet cell tracer, transduced with miR-28 or an empty control

retroviral vector, and cultured in vitro with anti-IgM 1 IL-4. The bottom panel shows representative FACS histograms of GFP1 cells 2 days after retroviral transduction (red

open line, control; blue shaded histogram, miR-28). The top panel shows quantification of the proportion of cells that have undergone 0 to 5 divisions (n 5 2). *P , .05,

unpaired Student t test. (G) FACS analysis of cell cycle in RFP1 miR-28– or control-transduced Ramos BL cells labeled with propidium iodide and 5-bromo-29-deoxyuridine

(BrdU). Cell-cycle phases and BrdU incorporation in RFP1 miR-28– and control-transduced Ramos BL cells are quantified on the right (n 5 4). (H-I) 7AAD and annexin V

staining (n 5 2) (H) and active caspase 3 staining (n 5 6) (I) in RFP1 miR-28– and control-transduced Ramos BL cells. *P , .05, unpaired Student t test.
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show that miR-28 has tumor suppressor activity in both BL and
DLBCL GC-derived lymphomas and interferes with lymphoma
establishment in vivo.

To determine if miR-28 can also impair the growth of established
lymphomas, we injected miR-28–transduced Ramos cells into NSG
micebefore inductionof the constructswithDox.Tumorswere allowed
to grow until they reached a volume of 200 mm3, and only then was
Dox administered in the drinking water (supplemental Figure 5B). We
found that miR-28 replacement significantly slowed the growth rate of
established Ramos BL tumors (Figure 5A-B). These results show the
therapeutic potential of in vivo miR-28 delivery for the treatment of
established GC-derived lymphomas.

Next, we assayed the antitumoral activity of a synthetic miR-28
mimic, an analog of the natural miRNA that is chemically modified to
enhance stability and activity.30 First, wild-type Ramos BL cells were
injected subcutaneously into NSGmice, tumors were allowed to reach
a volume of 200 mm3, and mice were then given 3 intratumor mimic
injections (supplemental Figure 5C). At both mimic doses and all time
points analyzed, miR-28 mimic delayed the growth of established BL
tumors (Figure 5C-D). We next tested the efficacy of miR-28 mimic
when administered IV.RamosBLxenograftswere established as in the
previous experiment, andmicewere thengiven2 intravenous injections
with miR-28 mimic (supplemental Figure 5D). Mice treated with
miR-28 mimic harbored notably smaller tumors than mice treated with
control (scramble) mimics (Figure 5E). Histopathological analysis
of kidney, liver, heart, and spleen of mice treated with intravenous
miR-28 mimic showed no evidence of macroscopic or microscopic
tissue alterations, indicating that this treatment does not have severe
toxic effects (supplemental Figure 6).

To study the therapeutic potential of miR-28 in primary lympho-
mas, we made use of the l-MYC mouse model, which recapitulates
many pathogenic features of human BL31 (Figure 6A-B). As expected,
miR-28 expressionwasupregulated innormalGCBcells froml-MYC
mice. More remarkably, miR-28 expression in l-MYC mice was lost
upon B-cell transformation, in agreement with the loss of miR-28
in human B-cell neoplasms (Figure 6C). To assess the therapeutic
potential of miR-28 replacement in primary lymphoma in vivo, we first
injected lymphoma cells subcutaneously from enlarged spleens or
lymph nodes of l-MYCmice into NSG hostmice and treated recipient
mice with intratumoral administration of miR-28 or control mimic at
either flank (supplemental Figure 5E). Growth was clearly reduced in
tumors treated with miR-28 mimic compared with those treated with
scramble mimic (Figure 6D). Finally, lymphoma cells from l-MYC
mice were injected IV into NSG recipients. In this model, mice
receivingl-MYCcells show spleen enlargement and a large expansion
ofB cells in the bonemarrow, comparedwithmice receiving cells from
control littermates (Figure 6E-F), which most likely reflects successful
tumor engraftment. At days 10 and 14 after l-MYC lymphoma
transplant, NSG mice were IV injected with miR-28 mimic, and mice
were euthanized for analysis 3 days later (supplemental Figure 5F). The
spleens ofmiR-28–treatedmicewere notably smaller than those treated
with control mimic (Figure 6G) and contained a lower proportion of
lymphoma B cells (Figure 6H). Indeed, intravenous miR-28 mimic
reduced the proportion of B lymphoma cells and proliferating Ki671

cells in spleen and increased the numbers of caspase 31 apoptotic
cells. Together, these results demonstrate that therapeutic strategies that
promotemiR-28 reexpression have the potential to impair B-cell tumor
growth in vivo by diminishing lymphoma proliferation and promot-
ing cell death.

Discussion

Our study addresses the role of miR-28 in the context of the GC and
the establishment and maintenance of GC-derived neoplasms. Using
miR-28 gain-of-function assays, we found that miR-28 expression
negatively regulates CSR and proliferation, whereas loss-of-function
miR-28 assays showed increasedmemory B- and plasma cell (PC)-cell
generation in vivo. We hypothesize that miR-28–mediated regulation
of cell proliferation and survival limits or terminates the GC reaction in
vivo, therebyacting as abrakeonB-cell transformation.Supporting this
idea, we detected progressively increasing miR-28 expression during
the GC reaction and found that the loss of miR-28 expression is a
frequent event in mature B-cell neoplasms, both in man and mouse.

Although the mechanism regulating miR-28 expression in GCs
remains to be determined, the lack of miR-28 upregulation in B cells
stimulated in vitro (Kuchen et al21 and our unpublished observations)
hints at events linked to T cell–dependent stimulation in vivo. Further
research is merited into the events leading to miR-28 downregulation
in a variety of B-cell neoplasms, including CLL, DLBCL, and BL;
however, genomic loss and transcriptional regulation mechanisms are
both likely to be important.25,26

To identify the genes regulated by miR-28 in B cells, we combined
quantitative transcriptome and proteome analyses. We found a signif-
icant overlap between the mRNA targets found in our transcriptome
analysis and those mRNAs showing the highest miR-28–induced
fold changes in a previous report.25 In our study, we believed that the
combination of transcriptome and proteome approaches was the pref-
erable choice formiRNA target identification, to allow the detection of
miR-28 activity both at the level of mRNA stability reduction and
at the level of translation inhibition.32,33 Importantly, this strategy has
led to the finding that miR-28 significantly alters the BCR signaling
network, the key signaling pathway regulating B-cell proliferation and
cell death. Dampened BCR signaling in miR-28–expressing B cells is
confirmed by reduced phosphorylation of key mediators of BCR
signaling such as AKT and ERK and by reduced expression of the
NF-kB mediators NF-kB2 and IKKb and the antiapoptotic effector
Bcl-2. Therefore, our data support the notion that miR-28 limits the
strength of BCR signaling, promoting a deficient or slower pro-
liferative activity together with impaired survival, which in turn could
account for the defect in CSR.34

BCR signaling plays a central role in the survival of neoplastic
B cells. This pivotal signaling pathway for B-cell physiology is
hijacked by tumor cells, where BCR gain-of-function mutations are
very frequent (reviewed in Shaffer et al1). Indeed, several B-cell
lymphomas, such as BL35,36 and ABC-DLBCL,29,37 rely on BCR
signaling to sustain lymphoma growth. Accordingly, various
therapeutic strategies for mature B-cell lymphoma are based on the
inhibition of key BCR signaling intermediates,38 including NF-kB
and IKKb39,40 and the antiapoptotic effectorBcl-2 (reviewed inBraun
et al41). Although further experiments are required to define the exact
regulation of BCR bymiR-28, we have found that miR-28 expression
correlates inversely with the levels of NFKB2, BCL2, and IKKB2
specifically in ABC-DLBCL. This, together with the finding that
ABC-DLBCL cases show a dramatic loss of miR-28,26 suggests that
ABC-DLBCL might be especially amenable to miR-28–based
therapy.

Our miR-28 replacement experiments in a variety of in vivo
lymphoma models confirm that miR-28 has antitumor activity. Our
results show that prophylactic and therapeutic lentiviral deliveries of
miR-28 interfere with tumor establishment and growth both in BL and
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Figure 4. miR-28 expression impairs B-cell lymphoma growth in vivo. (A) Tumor volume in NSG mice injected with Ramos BL cells expressing miR-28 or scramble RNA

(control). Ramos BL cells were transduced with pTRIPZ vectors encoding miR-28 precursor sequence (blue) or scrambled control (red) sequence and induced with Dox.

RFP1 cells isolated by flow cytometry were injected subcutaneously into either flank of NSG mice. Dox was administered in the drinking water a week before injection and

throughout the experiment. Tumors were measured at the indicated times and volume was calculated as volume (mm3) 5 (width [mm])2 3 (length [mm])/2. Each circle

represents an individual tumor. (B) Representative images of miR-28 or control xenograft tumors at endpoint (top) and weight (bottom) of miR-28 or control xenograft tumors

at endpoint (26 days postinjection). (C) Ramos xenografts were prepared as described in panel A. Mice were euthanized 26 days postinjection and tumors were stained with

anti-Ki67, anti-caspase-3, and anti-Bcl-2. Left panels show representative micrographs. Images were acquired at 320 (Ki67 and caspase 3; 340 in insets) or 340 (Bcl2)

magnification. Scale bars, 100 mm (Ki67) and 50 mm (Bcl-2). Right, quantification of active caspase 3 and Bcl-2 staining. (D) Tumor volume in NGS mice injected with MD-901

ABC-DLBCL or Raji BL cells expressing miR-28 or scramble RNA (control). MD-901 ABC-DLBCL, and Raji BL cells were transduced with pTRIPZ vectors encoding miR-28

precursor sequence (blue bars) or scrambled control sequence (red bars) and induced with Dox. *P , .05; ***P , .001, unpaired Student t test.
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in DLBCL xenografts. These in vivo lymphoma models are widely
used for preclinical antilymphoma drug testing.42 In our work, we have
demonstrated that miR-28 has antitumor activity not only in xenografts
of human lymphoma cell lines, but also in different settings of murine
primary lymphoma using l-MYC mice, where B-cell transformation
is also linked to miR-28 loss. miR-28 reexpression impairs prolifera-
tion and survival pathways in lymphoma cells and suggests that the
increased tumor cell death could be due to loss of Bcl-2, perhaps
by dampening BCR signaling. This hypothesis fits with the general

idea that BCR signaling is central to the establishment andmaintenance
of GC-derived lymphomas.29,37,41,43-47 However, our profiling results
are also compatible with contributions from other miR-28 targets
regulating alternative pathways of proliferation and cell survival in
lymphoma cells, or with NFkB and Bcl-2 being activated through
signaling pathways other than the BCR.

In addition, we were also able to block lymphoma growth using
synthetic mimics, which are thought to be the safest route for
therapeutic miRNA reintroduction. In recent years, the functional
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Figure 5. miR-28 expression suppresses established human lymphomas. (A) Ramos BL cells were transduced with lentivirus encoding miR-28 or scramble RNA

(control), and cells were injected subcutaneously, without induction, into NSG mice. Xenografts were left to establish for 21 days (until reaching ;250 mm3), and miR-28

expression was then induced by Dox in the drinking water. Graphs show volumes of individual tumors and mean values at the indicated times before (2Dox) and after (1Dox)

Dox administration (supplemental Figure 5B). (B) Tumor weights of miR-28 and control xenografts at 18 days after Dox treatment. (C) Intratumor administration with synthetic

miR-28 mimic suppresses established BL tumors. Wild-type Ramos cells were injected subcutaneously into NSG mice; after xenografts were established (tumor volume

.200 mm3), synthetic miR-28 mimic (blue bars) or scrambled control mimics (red bars) were administered intratumorally (supplemental Figure 5C). Graphs show tumor
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*P , .05; **P , .01, unpaired Student t test.
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impact of miRNAs on cancer development has made them very
attractive candidates for therapeutic strategies (reviewed in Braicu
et al48 and Bader et al49). miRNAs potentially confer a high degree
of specificity because of their intrinsic sequence-dependent target
definition. Moreover, miRNAs target gene networks rather than
individual genes, potentially making miRNA-based therapy less
susceptible to the development of resistance. Finally, therapies
based on replacing the normal levels of a tumor repressor miRNA
that have been lost during tumorigenesis are expected to be
significantly less toxic than antitumor treatments (reviewed in Taylor
and Schiemann18 and Nana-Sinkam and Croce19). In line with the
targeted nature of this approach, our data suggest that the toxicity of
miR-28 will be considerably lower than current strategies for the
treatment of B-cell neoplasms.

From the therapeutic standpoint, it is important to identify drugs
that can improve the efficacy and reduce the toxicity of standard
antilymphoma therapy. This is particularly relevant forBLandDLBCL,
which are often refractory to conventional chemotherapy.50,51 Taken
together, the results of this study reveal the therapeutic potential of
miR-28 and provide a rationale for the initiation of clinical trials of
miR-28–based therapies to treat B-cell NHL.
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