55 research outputs found

    Burn-Induced Local and Systemic Immune Response: Systematic Review and Meta-Analysis of Animal Studies

    Get PDF
    Contains fulltext : 284423.pdf (Publisher’s version ) (Open Access

    Assessing and Improving Positional Accuracy and its Effects on Areal Estimation at Coleambally Irrigation Area

    Get PDF
    If management decisions are made with geospatial data that have not been assessed for positional accuracy, then debate about both methodologies of measurement and management decisions can occur. This debate, in part, can be avoided by assessing the positional accuracy of geospatial data, leading to increased confidence (decreased uncertainty) in both the data and the decisions made from the data. In this study, we assessed the positional accuracy of two Geographic Information System (GIS) baseline datasets at the Coleambally Irrigation Area (CIA); high-resolution digital aerial photography acquired in January 2000, and the Digital Topographic Data Base (DTDB) roads data. We also assessed areal error of paddock measurements from an improved accuracy version of the high-resolution digital aerial photography. Positional accuracies were assessed by comparing well-defined features from both baseline datasets (original aerial photography and DTDB roads) to high-level accuracy Differential Global Positioning System (DGPS) data for the same features. This assessment showed that neither baseline dataset met the National Mapping Council of Australia’s standards of map accuracy. Consequently, we processed the original digital photography to create an improved dataset, which was over 2.5 times more accurate than the original photography, and over 4 times more accurate than the DTDB data. The improved dataset also met the map accuracy standard for Australia. We also assessed areal error by comparing paddock boundaries delineated from the improved dataset to those delineated from a DGPS associated with paddock soil surveys. The 90% confidence interval measured from the improved data for any individual paddock is approximately at the ± 5% target error set by Coleambally Irrigation Limited (CIL). The 95% confidence interval is roughly ± 6%. Overall areal error of multiple paddocks is much lower than the individual case with the 95% confidence interval for 2 paddocks being from about ± 4% error reducing to less than ± 2% for 8 or more paddocks. Knowledge of both positional and areal accuracies of the improved high-resolution digital aerial photography provides a means to more effectively manage environmental compliance of rice farmers at CIA and gives the CIL justification for making management decisions from this spatial data

    Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks

    Get PDF
    The workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders’ trust for implementation of NAM evidence and AOPs into chemical risk assessment

    Applying evidence-based methods to the development and use of adverse outcome pathways

    Get PDF
    The workshop “Application of evidence-based methods to construct mechanistic frameworks for the development and use of non-animal toxicity tests” was organized by the Evidence-based Toxicology Collaboration and hosted by the Grading of Recommendations Assessment, Development and Evaluation Working Group on June 12, 2019. The purpose of the workshop was to bring together international regulatory bodies, risk assessors, academic scientists, and industry to explore how systematic review methods and the adverse outcome pathway framework could be combined to develop and use mechanistic test methods for predicting the toxicity of chemical substances in an evidence-based manner. The meeting covered the history of biological frameworks, the way adverse outcome pathways are currently developed, the basic principles of systematic methodology, including systematic reviews and evidence maps, and assessment of certainty in models, and adverse outcome pathways in particular. Specific topics were discussed via case studies in small break-out groups. The group concluded that adverse outcome pathways provide an important framework to support mechanism-based assessment in environmental health. The process of their development has a few challenges that could be addressed with systematic methods and automation tools. Addressing these challenges will increase the transparency of the evidence behind adverse outcome pathways and the consistency with which they are defined; this in turn will increase their value for supporting public health decisions. It was suggested to explore the details of applying systematic methods to adverse outcome pathway development in a series of case studies and workshops

    The adequacy of ethical concepts on genetic engineering of animals. A confrontation with moral experiences from practice

    No full text
    Item does not contain fulltex

    Genetic engineering and our duties to laboratory animals: a theoretical and empirical analysis of the concepts of intrinsic value and animal integrity

    No full text
    Item does not contain fulltextRadboud Universiteit Nijmegen, 04 maart 2009Promotores : Zwart, H.A.E., Wils, J.P.196 p
    • 

    corecore