11 research outputs found

    Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation

    Get PDF
    BACKGROUND: Experimental populations of Escherichia coli have evolved for 20,000 generations in a uniform environment. Their rate of improvement, as measured in competitions with the ancestor in that environment, has declined substantially over this period. This deceleration has been interpreted as the bacteria approaching a peak or plateau in a fitness landscape. Alternatively, this deceleration might be caused by non-transitive competitive interactions, in particular such that the measured advantage of later genotypes relative to earlier ones would be greater if they competed directly. RESULTS: To distinguish these two hypotheses, we performed a large set of competitions using one of the evolved lines. Twenty-one samples obtained at 1,000-generation intervals each competed against five genetically marked clones isolated at 5,000-generation intervals, with three-fold replication. The pattern of relative fitness values for these 315 pairwise competitions was compared with expectations under transitive and non-transitive models, the latter structured to produce the observed deceleration in fitness relative to the ancestor. In general, the relative fitness of later and earlier generations measured by direct competition agrees well with the fitness inferred from separately competing each against the ancestor. These data thus support the transitive model. CONCLUSION: Non-transitive competitive interactions were not a major feature of evolution in this population. Instead, the pronounced deceleration in its rate of fitness improvement indicates that the population early on incorporated most of those mutations that provided the greatest gains, and subsequently relied on beneficial mutations that were fewer in number, smaller in effect, or both

    Environmental stress and the effects of mutation

    Get PDF
    Mutations are the ultimate fuel for evolution, but most mutations have a negative effect on fitness. It has been widely accepted that these deleterious fitness effects are, on average, magnified in stressful environments. Recent results suggest that the effects of deleterious mutations can, instead, sometimes be ameliorated in stressful environments

    Predicting the evolution of antibiotic resistance

    Get PDF
    <p>Abstract</p> <p>Mutations causing antibiotic resistance are often associated with a cost in the absence of antibiotics. Surprisingly, a new study found that bacteria adapting to increased temperature became resistant to rifampicin. By studying the consequences of the involved mutations in different conditions and genetic backgrounds, the authors illustrate how knowledge of two fundamental genetic properties, pleiotropy and epistasis, may help to predict the evolution of antibiotic resistance.</p> <p>See research article <url>http://www.biomedcentral.com/1471-2148/13/50</url></p
    corecore