95 research outputs found

    Current Classification of the Families of Coleoptera

    Get PDF
    (excerpt) Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations

    Notes on Insect Injection, Anesthetization, and Bleeding.

    Get PDF
    (excerpt) In recent years there has been a burgeoning interest in insect cytogenetics, sometimes involving in vivo cultures of haematocytes for chromosomal analysis. Mitotic poisons, such as colchicine (Tyrkus, 1971), are commonly injected to produce metaphase plates. Likewise, injection of toxins is now common-place in applied insect research. However, surprisingly little general information on injection is available in the literature. The dictates of morphology determine the gross procedure to be used. The kind of needle and syringe, the amount of fluid to be administered, and the necessity of optical aids are a function of the size of the insect recipient. Once these decisions are made, other considerations must still be weighed, including comparative exoskeletal toughness and the insect\u27s stage of development, which are important in determining possible areas for needle penetration

    Descripción de la larva de Clada fernandezi Español y consideraciones acerca de la subfamilia Hedobiinae

    Get PDF

    Exportation of MDR TB to europe from setting with actively transmitted persistent strains in peru

    Get PDF
    We performed a cross-border molecular epidemiology analysis of multidrug-resistant tuberculosis in Peru, Spain, and Italy. This analysis revealed frequent transmission in Peru and exportation of a strain that recreated similar levels of transmission in Europe during 2007–2017. Transnational efforts are needed to control transmission of multidrug-resistant tuberculosis globally

    New approaches for the identification of KChIP2 ligands to study the KV4.3 channelosome in atrial fibrillati

    Get PDF
    Resumen del trabajo presentado en el VIII Congreso Red Española de Canales iónico, celebrado en Alicante (España) del 24 al 27 de mayo de 2022.Ion channels are macromolecular complexes present in the plasma membrane and in intracellular organelles of the cells, where they play important functions. The dysfunction of these channels results in several disorders named channelopathies, which represent a challenge for study and treatment.[1] We are focused on voltage-gated potassium channels, specifically on KV4.3. Kv4.3 is expressed in smooth muscle, heart and brain. Within the heart, Kv4.3 channels generate the transient outward potassium current (ITO). However, ITO characteristics are only observed when Kv4.3 assemble with accessory subunits as KChIP2 and DPP6. KV4.3 channelosome play a key role in atrial fibrillation (AF),the most common cardiac arrhythmia, with an estimated prevalence in the general population of 1.5–2%. However, current antiarrhythmic drugs for AF prevention have limited efficacy and considerable potential for adverse effects.[2] KChIP2 (Potassium Channel Interacting Protein 2) belongs to the calcium binding protein superfamily. It is the KChIP member predominantly expressed in heart and a key regulator of cardiac action potential duration. The identification of novel KChIP2 ligands could be useful to understand the role of KV4.3 channelosome in AF and it could help to discover new treatments for AF. [3] In this regard, structure-based virtual screening could be an important tool to accelerate the identification of novel KChIP2 ligands. In this communication, we will describe a multidisciplinary approach that, starting with a structurebased virtual screening, followed by an iterative process of synthesis/biological evaluation/docking studies, has led to the identification of new KChIP2 ligands.PID2019-104366RB-C21, PID2019-104366RB-C22, PID2020-114256RB-I00 and PID2020-119805RB-I00 grants funded by MCIN/AEI/10.13039/501100011033; and PIE202180E073 and 2019AEP148 funded by CSIC. C.V.B. holds PRE2020-093542 FPI grant funded by MCIN/AEI/10.13039/501100011033. PGS was recipient of an FPU grant (FPU17/02731). AB-B holds BES-2017-080184 FPI grant and A.P-L.holds RYC2018-023837-I grant both funded by MCIN/ AEI/ 10.13039/501100011033 and by “ESF Investing in your future

    New approaches for the identification of KChIP2 ligands to study the KV4.3 channelosome in atrial fibrillati

    Get PDF
    Resumen del trabajo presentado en el VIII Congreso Red Española de Canales iónico, celebrado en Alicante (España) del 24 al 27 de mayo de 2022.Ion channels are macromolecular complexes present in the plasma membrane and in intracellular organelles of the cells, where they play important functions. The dysfunction of these channels results in several disorders named channelopathies, which represent a challenge for study and treatment.[1] We are focused on voltage-gated potassium channels, specifically on KV4.3. Kv4.3 is expressed in smooth muscle, heart and brain. Within the heart, Kv4.3 channels generate the transient outward potassium current (ITO). However, ITO characteristics are only observed when Kv4.3 assemble with accessory subunits as KChIP2 and DPP6. KV4.3 channelosome play a key role in atrial fibrillation (AF),the most common cardiac arrhythmia, with an estimated prevalence in the general population of 1.5–2%. However, current antiarrhythmic drugs for AF prevention have limited efficacy and considerable potential for adverse effects.[2] KChIP2 (Potassium Channel Interacting Protein 2) belongs to the calcium binding protein superfamily. It is the KChIP member predominantly expressed in heart and a key regulator of cardiac action potential duration. The identification of novel KChIP2 ligands could be useful to understand the role of KV4.3 channelosome in AF and it could help to discover new treatments for AF. [3] In this regard, structure-based virtual screening could be an important tool to accelerate the identification of novel KChIP2 ligands. In this communication, we will describe a multidisciplinary approach that, starting with a structurebased virtual screening, followed by an iterative process of synthesis/biological evaluation/docking studies, has led to the identification of new KChIP2 ligands.PID2019-104366RB-C21, PID2019-104366RB-C22, PID2020-114256RB-I00 and PID2020-119805RB-I00 grants funded by MCIN/AEI/10.13039/501100011033; and PIE202180E073 and 2019AEP148 funded by CSIC. C.V.B. holds PRE2020-093542 FPI grant funded by MCIN/AEI/10.13039/501100011033. PGS was recipient of an FPU grant (FPU17/02731). AB-B holds BES-2017-080184 FPI grant and A.P-L.holds RYC2018-023837-I grant both funded by MCIN/ AEI/ 10.13039/501100011033 and by “ESF Investing in your future

    Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis

    Get PDF
    Background: Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings: The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10 4 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10 2 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance: The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism o

    Presence of RD149 Deletions in M. tuberculosis Central Asian Strain1 Isolates Affect Growth and TNFα Induction in THP-1 Monocytes

    Get PDF
    Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences
    corecore