167 research outputs found
Utility of fibroblasts derived from broncho-alveolar lavage of patients with idiopathic pulmonary fibrosis or related disorders to develop in vitro models
Broncho-alveolar lavage (BAL) represents a safe tool for the differential diagnosis of various pulmonary fibrotic diseases. Idiopathic pulmonary fibrosis (IPF) belongs to a heterogeneous group of diseases, interstitial lung disease (ILD), presenting a progressive impairment of pulmonary functions. IPF is characterized by the excessive accumulation of extracellular matrix (ECM) in the alveolar parenchyma that may lead to irreversible pulmonary remodeling. Although the exact pathogenetic mechanisms leading to IPF development are still unclear it has been demonstrated that fibroblasts differentiating toward myofibroblasts are the major actors involved in this process. The possibility of obtaining and expanding fibroblasts from the BAL of ILD patients for research purposes has been recently explored. This approach is discussed here as a reliable chance, helpful to advance the scientific community knowledge and to devise two- and three-dimensional (2D/3D) pre-clinical in vitro models of these diseases, further overcoming technical and ethical concerns related to the use of fibroblasts derived from tissue biopsy
Resonant Fully dielectric metasurfaces for ultrafast Terahertz pulse generation
Metasurfaces represent a new frontier in materials science paving for
unprecedented methods of controlling electromagnetic waves, with a range of
applications spanning from sensing to imaging and communications. For pulsed
terahertz generation, metasurfaces offer a gateway to tuneable thin emitters
that can be utilised for large-area imaging, microscopy and spectroscopy. In
literature THz-emitting metasurfaces generally exhibit high absorption, being
based either on metals or on semiconductors excited in highly resonant regimes.
Here we propose the use of a fully dielectric semiconductor exploiting
morphology-mediated resonances and inherent quadratic nonlinear response. Our
system exhibits a remarkable 40-fold efficiency enhancement compared to the
unpatterned at the peak of the optimised wavelength range, demonstrating its
potential as scalable emitter design
Microenvironment regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence
The development and progression of Chronic Lymphocytic Leukemia (CLL) require co-operation of both microenvironment and cytokines. Investigating the IL-23R/IL-23 axis we found that circulating cells of early-stage CLL patients with shorter time-to-treatment (but not of those with a more benign course) expressed a defective form of the IL-23R complex lacking the IL-12Rß1 chain. However, the cells from both patient groups expressed the com-plete IL-23R complex in tissue infiltrates and could be induced to express it when co-cultured with activated T cells or other CD40L-bearing cells. IL-23 production by CLL cells activated in vitro in this fashion and in lymphoid tissues was observed suggesting the exist-ence of an autocrine/paracrine loop causing CLL cell proliferation. Culture of CLL cells with stromal cells, nurse like cells and stimulation with anti IgM antibodies and IL-4 failed to activate this loop. Interference with the IL-23R/IL-23 axis using an anti-IL-23p19 anti-body proved effective in controlling disease onset/expansion in xenografted mice, suggest-ing potential therapeutic strategies
Microenvironmental regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence
Although the progression of chronic lymphocytic leukemia (CLL) requires the cooperation of the microenvironment, the exact cellular and molecular mechanisms involved are still unclear. We investigated the interleukin (IL)-23 receptor (IL-23R)/IL-23 axis and found that circulating cells from early-stage CLL patients with shorter time-to-treatment, but not of those with a more benign course, expressed a defective form of the IL-23R complex lacking the IL-12R beta 1 chain. However, cells from both patient groups expressed the complete IL-23R complex in tissue infiltrates and could be induced to express the IL-12R. 1 chain when cocultured with activated T cells or CD40L(+) cells. CLL cells activated in vitro in this context produced IL-23, a finding that, together with the presence of IL-23 in CLL lymphoid tissues, suggests the existence of an autocrine/paracrine loop inducing CLL cell proliferation. Interference with the IL-23R/IL-23 axis using an anti-IL-23p19 antibody proved effective in controlling disease onset and expansion in xenografted mice, suggesting potential therapeutic strategies
Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment?
Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo
Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironrnent. Here, we describe a survival signaling pathway activated in stromal cells by contact to B cells from patients with chronic lymphocytic leukemia (CLL). The expression of protein kinase C (PKC)-beta II and the subsequent activation of NF-kappa B in bone marrow stromal cells are prerequisites to support the survival of malignant B cells. PKC-beta knockout mice are insusceptible to CLL transplantations, underscoring the in vivo significance of the PKC-beta II-NF-kappa B signaling pathway in the tumor microenvironment. Upregulated stromal PKG-beta II in biopsies from patients with CLL, acute lymphoblastic leukemia, and mantle cell lymphoma suggests that this pathway may commonly be activated in a variety of hematological malignancies
CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways
BACKGROUND: CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. METHODS: The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. RESULTS: Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. CONCLUSION: These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively
- …