30 research outputs found

    Archetypes : Common systemic behaviours in food systems

    Get PDF
    System archetypes represent generic behavioural patterns – or system dynamics – in any system. The concept of archetypes is mostly applied in the context of business management and organizational life. The term archetype was first coined by Peter Senge (1990) in his seminal book ‘The Fifth Discipline’. He uses systems thinking to convert companies into learning organizations; understanding complexity and reflective conservation are some of the key competences required to address complex problems. But similar archetypes of system behaviour can be found in food systems. The use of archetypes assumes that, if the underlying systemic structure that results in specific behavioural patterns is understood, action can be taken to change the structure and thus systemic behaviour and consequently outcomes. Archetypes capture the ‘common stories’ in systems thinking; that is, dynamic phenomena that occur in diverse settings. The archetypes are used as templates for diagnosing complex problems (Kim, 2000). Below, eight archetypes are explained based on the work of Kim (2000). Based on our own expertise and the information collected during a stakeholder workshop with food systems and FNS experts, we have provided examples of these archetypes in food systems. For each archetype, a set of leverage points is identified, which can offer solutions for the problematic behaviour captured by the archetype (Nguyen and Bosch, 2013)

    Food System Resilience

    Get PDF
    The COVID-19 crisis is just one in a series of shocks and stressors that exemplify the importance of building resilient food systems. To ensure that desired food system outcomes are less fluctuating, policy makers and other important stakeholders need a common narrative on food system resilience. The purpose of this paper is to work towards a joint understanding of food system resilience and its implications for policy making. The delivery of desired outcomes depends on the ability of food systems to anticipate, prevent, absorb, and adapt to the impacts of shocks and stressors. Based on our literature review we found four properties of food systems that enhance their resilience. We refer to these as the A B C D of resilience building: Agency, Buffering, Connectivity and Diversity. Over time, many food systems have lost levels of agency, buffering capacity, connectivity or diversity. One of the principal causes of this is attributed to the governance of food systems. Governance is inherently political: as a result of conflicting interests and power imbalances, food systems fail to deliver equitable and just access to food. Moreover, the impacts of shocks and stressors are not evenly distributed across actors in the food system. This paper has highlighted the importance of more inclusive governance to direct food system transformation towards such higher levels of resilience. We conclude that we cannot leave this to the market, but that democratic and before all independent, credible institutions are needed to create the necessary transparency between actors as to their interests, power and influence

    Loss of microbial topography between oral and nasopharyngeal microbiota and development of respiratory infections early in life

    Get PDF
    Rationale: The respiratory microbiota is increasingly being appreciated as an important mediator in the susceptibility to childhood respiratory tract infections (RTIs). Pathogens are presumed to originate from the nasopharyngeal ecosystem. Objectives: To investigate the association between early life respiratory microbiota and development of childhood RTIs. Methods: In a prospective birth cohort (Microbiome Utrecht Infant Study: MUIS), we characterized the oral microbiota longitudinally from birth until 6 months of age of 112 infants (nine regular samples/subject) and compared them with nasopharyngeal microbiota using 16S-rRNA–based sequencing. We also characterized oral and nasopharynx samples during RTI episodes in the first half year of life. Measurements and Main Results: Oral microbiota were driven mostly by feeding type, followed by age, mode of delivery, and season of sampling. In contrast to our previously published associations between nasopharyngeal microbiota development and susceptibility to RTIs, oral microbiota development was not directly associated with susceptibility to RTI development. However, we did observe an influx of oral taxa, such as Neisseria lactamica, Streptococcus, Prevotella nanceiensis, Fusobacterium, and Janthinobacterium lividum, in the nasopharyngeal microbiota before and during RTIs, which was accompanied by reduced presence and abundance of Corynebacterium, Dolosigranulum, and Moraxella spp. Moreover, this phenomenon was accompanied by reduced niche differentiation indicating loss of ecological topography preceding confirmed RTIs. This loss of ecological topography was further augmented by start of daycare, and linked to consecutive development of symptomatic infections. Conclusions: Together, our results link the loss of topography to subsequent development of RTI episodes. This may lead to new insights for prevention of RTIs and antibiotic use in childhood

    Maturation of the infant respiratory microbiota, environmental drivers and health consequences: a prospective cohort study

    Get PDF
    Rationale: Perinatal and postnatal influences are presumed important drivers of the early-life respiratory microbiota composition. We hypothesized that the respiratory microbiota composition and development in infancy is affecting microbiota stability and thereby resistance against respiratory tract infections (RTIs) over time. Objectives: To investigate common environmental drivers, including birth mode, feeding type, antibiotic exposure, and crowding conditions, in relation to respiratory tract microbiota maturation and stability, and consecutive risk of RTIs over the first year of life. Methods: In a prospectively followed cohort of 112 infants, we characterized the nasopharyngeal microbiota longitudinally from birth on (11 consecutive sample moments and the maximum three RTI samples per subject; in total, n = 1,121 samples) by 16S-rRNA gene amplicon sequencing. Measurements and Main Results: Using a microbiota-based machine-learning algorithm, we found that children experiencing a higher number of RTIs in the first year of life already demonstrate an aberrant microbial developmental trajectory from the first month of life on as compared with the reference group (0-2 RTIs/yr). The altered microbiota maturation process coincided with decreased microbial community stability, prolonged reduction of Corynebacterium and Dolosigranulum, enrichment of Moraxella very early in life, followed by later enrichment of Neisseria and Prevotella spp. Independent drivers of these aberrant developmental trajectories of respiratory microbiota members were mode of delivery, infant feeding, crowding, and recent antibiotic use. Conclusions: Our results suggest that environmental drivers impact microbiota development and, consequently, resistance against development of RTIs. This supports the idea that microbiota form the mediator between early-life environmental risk factors for and susceptibility to RTIs over the first year of life

    Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps

    Get PDF
    Planetary health brings together intrinsically linked issues of human health and natural systems. This paper reviews evidence of how agrobiodiversity underpins dietary diversity for current human populations in the context of fruits and vegetables, and ways to maintain and improve these for future generations. Both the conservation and sustainable use of fruit and vegetable biodiversity and the consumption of diverse diets are sub-optimal, and in many contexts getting worse. Agrobiodiversity and nutrition are linked through food availability, access, conservation and consumption, with potential win-wins but notable trade-offs for policy and action through time, place, agrobiodiversity use, and equity. We pinpoint research gaps and call for inclusive deliberation for action
    corecore