1,005 research outputs found

    The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration

    Get PDF
    Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer’s disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases

    Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant No. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138. We also thank Mate Babić for help in preparation of schematics.Peer reviewedPublisher PD

    Monoaminergic Neuropathology in Alzheimer's disease

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant. no. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138.Peer reviewedPostprin

    Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer’s disease tau

    Get PDF
    OBJECTIVES: Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer’s disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses. METHODS: To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers. RESULTS: At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event. CONCLUSIONS: The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD

    Simulation and Measurements of HOM Filter of the LARP Prototype RF-Dipole Crabbing Cavity Using an RF Test Box

    Get PDF
    The RF-Dipole Crabbing Cavity designed for the LHC High Luminosity Upgrade includes two higher order mode (HOM) couplers. One of the HOM couplers is an rf filter, which is a high pass filter designed to couple to the horizontal dipole modes and accelerating modes up to 2 GHz, while rejecting the fundamental operating mode at 400 MHz. The coupler consists of a high pass filter circuit where the rejection of the operating mode and transmission of HOMs are sensitive to dimensional deviations. An rf test box has been designed to measure the transmission of the rf filter in order to qualify the fabricated HOM coupler and to tune the coupler. This paper presents the measurements of the HOM coupler with the rf test box

    Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer's disease

    Get PDF
    Although genetic factors play a main role in determining the risk of developing Alzheimer’s disease (AD), they do not explain extensive spectrum of clinicopathological phenotypes. Deposits of aggregated TAU proteins are one of the main predictors of cognitive decline in AD. We investigated the hypothesis that variabilities in AD progression could be due to diverse structural assemblies (strains) of TAU protein. Using sensitive biophysical methods in 40 patients with AD and markedly different disease durations, we identified populations of distinct TAU particles that differed in size, structural organization, and replication rate in vitro and in cell assay. The rapidly replicating, distinctly misfolded TAU conformers found in rapidly progressive AD were composed of ~80% misfolded four-repeat (4R) TAU and ~20% of misfolded 3R TAU isoform with the same conformational signatures. These biophysical observations suggest that distinctly misfolded population of 4R TAU conformers drive the rapid decline in AD and imply that effective therapeutic strategies might need to consider not a singular species but a cloud of differently misfolded TAU conformers

    A cognitive chameleon: lessons from a novel MAPT mutation case.

    Get PDF
    We report a case of frontotemporal dementia caused by a novel MAPT mutation (Q351R) with a remarkably long amnestic presentation mimicking familial Alzheimer's disease. Longitudinal clinical, neuropsychological and imaging data provide convergent evidence for predominantly bilateral anterior medial temporal lobe involvement consistent with previously established neuroanatomical signatures of MAPT mutations. This case supports the notion that the neural network affected in MAPT mutations is determined to a large extent by the underlying molecular pathology. We discuss the diagnostic significance of anomia in the context of atypical amnesia and the impact of impaired episodic and semantic memory systems on autobiographical memory

    The role of tau in the pathological process and clinical expression of Huntington's disease.

    Get PDF
    Huntington's disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington's disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington's disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington's disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington's disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype-phenotype analysis of a large cohort of patients with Huntington's disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington's disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington's disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington's disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT haplotypes affect the rate of cognitive decline in a large cohort of patients with Huntington's disease. Our findings therefore highlight a novel important role of tau in the pathogenic process and clinical expression of Huntington's disease, which in turn opens up new therapeutic avenues for this incurable condition.The authors thank the EHDN REGISTRY Study Group investigators (listed in the Supplementary material) for collecting the data and all participating REGISTRY patients for their time and efforts, the Cambridge Brain Bank for the post-mortem tissue which is supported by a grant to the NIHR Cambridge Biomedical Research Centre and in particular to J. Wilson and Dr D. O’ Donovan. We are grateful to S. Sawcer and M. Ban in the Neurology Unit at the University of Cambridge, for their help with the genotyping, C.H. Williams-Gray at the John van Geest Centre for Brain Repair, University of Cambridge, for her help with the statistical analyses, J. Hardy, J.L. Holton, and T. Revesz at the UCL Institute of Neurology for their helpful discussions as well as K. Strand, F. Javad and A. Posada Bórbon, at the UCL Institute of Neurology, for their support with the experimental work, R. Kayed at the University of Texas Medical Branch, Galveston, for providing the TOMA and T22 antibodies. Finally, P. Tyers, R. Raha-Chowdhury, A. Tolkovsky, B. Ossola and J. Simpson for their support and encouragement throughout this work.This is the final version of the article. It was first available from Oxford University Press viahttp://dx.doi.org/10.1093/brain/awv10

    Design of a Proof-of-Principle Crabbing Cavity for the Jefferson Lab Electron-Ion Collider

    Get PDF
    The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics
    corecore