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Abstract 

Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive 
degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mecha-
nisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation 
of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer’s disease (AD), inclusions of 
hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in 
Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic 
mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of 
oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methyla-
tion, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, 
including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-
related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key 
in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA 
methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and 
in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions 
for these diseases.
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Introduction
Neurodegenerative diseases form a diverse group of neu-
rological disorders which are characterised by progressive 
degeneration of the structure and function of the central 
or peripheral nervous system accompanied by loss of 
neurons. Despite the extensive accumulation of evidence 
and proposal of multiple pathogenic mechanisms, there 
is much to learn about how these disorders develop and 
progress. Many studies to date have focused on neuronal 
cells [33, 36]. Less is understood of the involvement of 
oligodendrocytes (OLGs), which are a major type of glial 
cells in the central nervous system (CNS). The primary 
function of OLGs is to produce myelin, and there is grow-
ing evidence which implicates myelin changes and OLG 
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dysfunction across several neurodegenerative diseases 
[7, 14, 25, 77, 79, 87, 102]. In support of these changes 
not being mere downstream consequences of disease, 
multiple genome-wide association studies (GWAS) have 
identified genetic variants in myelin/OLG-related genes 
such as MOBP as being associated with the risk of multi-
ple neurodegenerative diseases [18, 41, 46, 54, 59, 85, 88]. 
However, a more holistic view of mechanisms underlying 
OLG malfunction in neurodegeneration is far from being 
fully elucidated.

Changes to the epigenome have been consistently asso-
ciated with neurodegenerative diseases in recent years [4, 
73, 91, 99, 118]. By inducing chromatin changes, epige-
netic mechanisms can regulate gene expression without 
changing the underlying genetic sequence. These epige-
netic mechanisms include DNA methylation, which is 
the most widely studied, and histone modifications such 
as acetylation [73]. Although epigenetic modifications are 
crucial for the functioning of the cells and are involved in 
processes such as genomic imprinting and tissue differ-
entiation, they also relate to the development of disease 
[67, 73]. Of interest to the topic to be discussed in this 
review, studies highlighting cell-type specific epigenetic 
changes [91], including in OLGs, started to emerge in the 
field of neurodegeneration. Although at its infancy, such 
studies are much needed to fully understand cell-type 
specific contributions to disease processes.

In this review, we highlight evidence which implicates 
the (dys)function of OLGs and myelin in neurodegenera-
tion, and discuss how epigenetic modifications such as 
DNA methylation are crucial for OLG life cycle and mye-
lination and how this could be affected in disease.

The importance of the oligodendrocyte lineage 
and the myelin in the healthy brain
OLGs are a major glial cell type in the CNS, which con-
stitute around 75% of the CNS glial cell population [80]. 
OLGs are responsible for the production, stability, and 
maintenance of myelin [14], the lipid-rich, multilamellar 
membrane which wraps around axons and enables fast 
transmission of electrical signals. Structurally, the myelin 
sheath is an extension of the OLG plasma membrane that 
wraps around nerve axons in a concentric fashion [102]. 
The myelin sheath is not continuous along the neuron. 
Sections of myelinated axon are separated by nodes of 
Ranvier. These enable saltatory conduction, the ‘hopping’ 
of electrical impulses along axons, which allows for fast 
transmission of electrical signals. The importance of the 
myelin sheath is demonstrated by the consequences of its 
loss, notably in demyelinating diseases such as multiple 
sclerosis (MS), where it results in a range of neurological 

symptoms including visual, motor and sensory problems, 
with associated disability and reduced life expectancy 
[20]. OLGs are also involved in homeostasis, trophic sup-
port to neurons, provision of lactate to neurons, and the 
secretion of various growth factors [26].

OLGs arise from oligodendrocyte precursor cells 
(OPCs), which are characterised by the expression of 
PDGFR-α (platelet derived growth factor receptor α) 
and NG2 (neuron-glial antigen 2) [107]. It is known that 
OPCs, which arise in the ventricular zone during early 
development [106, 108, 110], proliferate and migrate, and 
differentiate in stages [56] into myelinating OLGs (Fig. 1). 
Although most OPCs differentiate to form myelinat-
ing OLGs, some OPCs are retained in their proliferative 
stage. This results in OPCs accounting for 5–10% of all 
adult brain cells [22]. The main role of adult OPCs is to 
provide a source of new mature, myelinating OLGs. How-
ever, recent studies show they also have other impor-
tant roles, including their involvement in cell signalling, 
metabolic regulation and as immune modulators [28, 52, 
76]. The maturation of OPCs into OLGs, although rela-
tively well characterised in mice, is not well described in 
humans given the technical challenges of studying post-
mortem brain tissue and/or limitations of current human 
OLG-like cell lines.

A role for myelin and oligodendrocytes 
in neurodegenerative diseases
The involvement of myelin changes in neurodegeneration
Myelination is a dynamic process that continues through-
out life. Most myelination takes place from early child-
hood through to adolescence, with the major part taking 
place in the first two years of life. However, myelination 
does continue into adulthood, followed by an age-related 
decline in myelination occurring around the sixth decade 
of life (Fig.  2) [29]. However, decreases in myelin with 
ageing are not uniform, with regions of the brain that are 
myelinated earlier in development (such as the primary 
motor and sensory regions) undergoing white matter 
decline later [87].

Although neurodegenerative diseases such as Alzhei-
mer’s disease (AD) are mainly associated with grey matter 
and neuronal damage, there is evidence for decline and 
involvement of white matter during disease progression. 
Disruption of myelin in AD was described at the beginning 
of the twentieth century by Alois Alzheimer [79]. It has also 
been noted that the typical age-of-onset of neurodegen-
erative diseases coincides with the time when age-related 
decline in myelination is observed (Fig. 2) [29]. Moreover, 
early evidence of the disruption of myelin in AD suggested 
those regions of the cortex, such as the temporal and 
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frontal lobes, that are myelinated later in development are 
more likely to present with AD pathology earlier [13, 79]. 
This suggests that those regions that myelinate later are 
more vulnerable to pathogenic mechanisms which result 
in neurodegeneration. Further evidence of this involve-
ment of myelin comes from the observations of white mat-
ter changes in brain imaging studies. For example, white 
matter hyperintensities (WMHs), which are associated 
with loss of myelin integrity, have been shown to predict 
incident AD [15, 16, 77]. Brain imaging data has indicated 
that β-amyloid deposition may change white matter micro-
structure in early disease stages [23]. White matter abnor-
malities and myelin degradation are also described in other 
neurodegenerative diseases, including multiple system 
atrophy (MSA) [64], amyotrophic lateral sclerosis (ALS) 
[121] and progressive supranuclear palsy (PSP) [27, 114].

The involvement of the oligodendrocyte lineage 
in neurodegeneration
Evidence from pathology
A direct role for OLGs in neurodegenerative disease is 
exemplified by the pathology of MSA, where glial cyto-
plasmic inclusions (GCIs) in OLGs are the pathological 
hallmark of the disease [49]. In MSA, these inclusions 
consist of aggregates of the synaptic protein α-synuclein. 
Whether α-synuclein is produced by the OLGs or prop-
agated from neurons is not clear. In MSA, increased 
number of OPCs is also reported in post-mortem brain 
tissue [1, 65]. PSP and corticobasal degeneration (CBD) 
also display clear OLG pathology with disease hallmarks 
including tau deposits in OLGs, presenting as coiled bod-
ies [24, 53].

Although the precise role of OLGs in AD pathology 
is less clear, there is evidence from human post-mortem 

Fig. 1  Schematic representation of the stages of OLG lineage differentiation. OPCs (PDGFRαhigh/NG2+) arise from NPCs (A2B5+), before forming 
mature OLGs (O4+/CNP+/CC1+) and then myelinating OLGs (MOG+/MAG+/MBP+/CC1+/PLP+). NPC Neural progenitor cell, OLG Oligodendrocyte, 
OPC Oligodendrocyte precursor cell. Figure created with BioRender
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studies that there are alterations in the numbers and 
morphology of OLG lineage cells in this disease [77]. In 
post-mortem AD brain tissue, decreases in Olig2 + cells 
have been reported [8], as well as increased numbers 
of OPCs in white matter lesions [93]. Morphological 
changes in OLGs derived from AD post-mortem brains 
have also been seen, specifically a decrease in nuclear 
diameter in parahippocampal white matter [34]. A recent 
study, in apolipoprotein E-ε4 allele (APOE-ε4) carriers, 
also demonstrated aberrant deposition of cholesterol in 
OLGs and dysregulated myelination in AD [12].

Evidence from genetics
GWAS have also implicated specific myelin/OLG-related 
genes in neurodegeneration, including the bridging 
integrator 1 (BIN1) gene, which is the second strong-
est genetic risk factor for late onset AD [45, 57, 58] and 
known to be largely expressed by mature OLGs and 
localised to white matter tracts [86]. Increased expres-
sion of BIN1 is reported in AD [17], although mecha-
nisms behind the association of BIN1 and AD are unclear. 
Myelin associated oligodendrocyte protein (MOBP) gene 

has been associated with disease risk in several neurode-
generative diseases, including PSP [19, 41, 88], CBD [54], 
AD APOE-ε4 carriers [59], ALS [85] and PD [95], and has 
also been reported to be associated with white matter 
degradation and increased rates of decline in executive 
function in behavioural variant frontotemporal dementia 
[46]. The functional repercussions of such associations 
remain unclear. However, in human brain tissue, the risk 
allele T, of the disease-associated single nucleotide poly-
morphism rs1768208, is also associated with increased 
expression of the MOBP gene in PSP [2].

Aside from such examples of myelin/OLG relevant 
genes identified through GWAS, transcriptomic analy-
ses reveal gene expression changes in additional mye-
lin-related genes in a broad range of neurodegenerative 
diseases, including AD [3], PSP [3], MSA [82], and fron-
totemporal lobar degeneration (FTLD) [39], further sup-
porting the idea of myelination changes as a common 
pathway across these diseases. Examples of evidence sup-
porting the importance of OLG/OPC involvement across 
several neurodegenerative diseases are given in Fig. 3.

Fig. 2  Schematic of the myelin changes throughout life. Shaded areas indicating myelination waves (as defined by de Faria et al. [29]). Also 
depicted are visualizations of the progression of cortical myelination and the progression of Alzheimer’s disease related destruction. The average 
age of onset of multiple neurodegenerative diseases is also indicated and coincides with the start of normal ageing-related decline in myelination, 
which is hypothesized to be accelerated in neurodegeneration. Figure created with BioRender
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A role for DNA methylation in the dysfunction 
of oligodendrocytes and myelin 
in neurodegenerative diseases
Epigenetic modifications are those which, without alter-
ing the underlying DNA sequence, bring around changes 
in gene expression. DNA methylation, the most widely 
studied epigenetic modification, involves the transfer of a 
methyl group to a cytosine nucleotide to form 5-methyl-
cytosine (5mC) [66] (Fig. 4a). This transfer is catalysed by 
a family of enzymes called DNA methyltransferases. The 
effect DNA methylation on gene expression regulation 
is largely dependent upon genomic location [37, 66]. For 
example, methylation within the gene body, i.e. protein 
coding exons and introns, more often results in increased 
gene expression, whereas methylation in the promoter 
region frequently leads to decreased gene expression [60, 
78, 109]. DNA methylation, along with other epigenetic 
modifications, allow the intricate spatiotemporal control 
of gene expression and is crucial both during develop-
ment and adult life. DNA methylation has been impli-
cated in many processes relevant for the brain, including 
in brain development, learning, memory, and brain 
cell-type specification [48]. DNA hydroxymethylation 

(5hmC), an oxidative derivative of DNA methylation 
(Fig.  4a), is also important. Having originally been pre-
sumed to be an intermediate mark before demethyla-
tion [38], evidence now supports a functional role for 
5hmC [103]. Interestingly, the distribution of different 
methylation states varies in a tissue dependent man-
ner, with 5hmC known to be enriched tenfold in human 
brain compared to peripheral tissues [35]. Distribution 
of 5mC and 5hmC between brain cell-types has also 
been reported to be variable, with studies indicating 
that 5hmC may be enriched in neuronal cells compared 
to OLGs [55, 72]. Notwithstanding, Fig.  5 shows 5mC 
and 5hmC immunopositive glial nuclei, including OLG 
nuclei, in human post-mortem white matter tissue. 

Studies using immunodetection of 5mC or 5hmC 
have often failed to lead to consensus regarding the 
occurrence of global DNA methylation/hydroxymeth-
ylation changes in neurodegenerative diseases, pos-
sibly reflecting limitations of such techniques [5, 73, 
113]. However, technological advances that allowed 
querying throughout the genome at specific sites, have 
empowered investigations of relevant candidate genes 
and epigenome-wide association studies (EWAS) to 

Fig. 3  Non-exhaustive summary of evidence implicating the oligodendrocyte lineage across neurodegenerative diseases. AD—Alzheimer’s 
disease, ALS—Amyotrophic lateral sclerosis, BIN1—Bridging Integrator 1, CBD—Corticobasal degeneration, FTD—Frontotemporal dementia, GCI 
– Glial cytoplasmic inclusion, MSA—Multiple System Atrophy, MOBP—Myelin-associated oligodendrocyte protein, OLG—Oligodendrocyte, OPC—
Oligodendrocyte precursor cell, PSP—Progressive supranuclear palsy. Figure created with BioRender
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Fig. 4  Schematic representation of the DNA modifications cycle, including factors responsible for the transitions between states. a Overall 
DNA modifications cycle; b Diagram summarising the known involvement of DNMTs and TET enzymes in OLG differentiation, developmental 
myelination, and in remyelination in response to injury. Evidence shows an age dependent role for DNMT1 and DNMT3A, with the former 
suggested to be more important in developmental myelination, and the latter in the remyelination involving differentiation of adult OPCs [68, 71]. 
Whilst it has been suggested that all three TET enzymes are involved in oligodendrocyte differentiation [120], TET1 has been reported to be more 
important for myelination and remyelination after injury [38, 69]. DNMT1/3A/3B—DNA methyltransferase 1/3A/3B, TET—ten-eleven translocation 
enzymes, TDG—thymine DNA glycosylase. Figure created with BioRender
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identify DNA methylation alterations in neurode-
generative diseases at the single nucleotide resolu-
tion. In AD, EWAS studies utilising bulk brain tissue 
have identified multiple genes with DNA methylation 
changes associated with the disease and its pathologi-
cal burden [47, 61, 98, 111], and meta-analyses have 
identified significant changes across multiple brain 
regions [91, 96, 99, 118]. Differentially methylated 
genes have also been identified in bulk brain tissue 
EWAS in other neurodegenerative diseases such as PD 
[51, 63], PSP [112], MSA [10], FTLD [31] and Hunting-
ton’s disease [43, 100]. DNA methylation changes in 
AD and movement disorders (including PD, HD, PSP 
and MSA) have been reviewed by Smith et al. [96] and 
Murthy et al. [73], respectively.

Whilst most DNA methylation studies employ 
‘bulk’ tissue analysis, more recent studies explor-
ing DNA methylation changes in neurodegeneration 
have investigated cell-specific alterations. Shireby and 
co-workers investigated AD-related DNA methyla-
tion signatures in purified brain nuclei and found that 
many AD-related DNA methylation changes that had 
previously been detected in ‘bulk’ tissue were indeed 
driven by changes in non-neuronal cells, including 
in OLGs [91]. This finding highlights the need of a 
deeper understanding of DNA methylation changes 
in OLGs which may also occur in other neurodegen-
erative diseases. Below, we discuss several lines of evi-
dence that support DNA methylation having a role in 
the dysfunction of OLGs and myelin in neurodegen-
erative diseases. These are summarised in Fig. 6.

DNA methylation plays a crucial role in determining 
the fate of OPCs in health and neurodegenerative diseases
Gene expression changes determined by DNA methyla-
tion play an important role in the process of lineage spec-
ification from OPCs to mature OLGs [68, 105]. Although 
most studies investigating the OLG life cycle have been 
conducted in animal models, there is significant evi-
dence to suggest that DNA methyltransferases and DNA 
methylation are dynamic in the processes of OPC speci-
fication, survival, proliferation, differentiation, and myeli-
nation [68, 70, 83, 104, 105]. Proliferation of OPCs occurs 
in response to exogenous signals such as growth factors, 
and epigenetic modifications are important players in this 
regulation. In mice, ablation of DNA methyltransferases 
has been shown to result in a hypomyelinating phenotype 
through reduction in the OPC progenitor pool due to 
impaired OPC proliferation [70]. During differentiation 
of OPCs to OLGs in mice, lower DNA methylation levels 
in myelin genes and increased methylation levels in cell 
cycle and neuronal genes were reported [70]. Given that 
the majority of the DNA methylation sites (CpGs) inves-
tigated in these studies were in promoter regions, and 
given the association of promoter region DNA hyper-
methylation with decreased gene expression, this sup-
ports an important role for DNA methylation in silencing 
cell cycle and proliferation genes and in activating mye-
lin genes, thus enabling OPCs to leave their prolifera-
tive state and differentiate into myelinating OLGs. DNA 
methylation of specific genes involved in OPC differen-
tiation has also been described. The DNA-binding pro-
tein inhibitors Id2 and Id4 showed decreased expression 
during OPC differentiation in mice, which was correlated 

Fig. 5  Immunohistochemical analysis of global DNA (hydroxyl)methylation in human post-mortem cerebellar white matter tissue. Positive staining 
in nuclei of glial cells, including oligodendrocytes, is shown in brown (scale bar 100 µm). a 5‐Methylcytosine (5mC) immunohistochemical staining; 
b 5‐Hydroxymethylcytosine (5hmC) immunohistochemical staining
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with hypermethylation of their promoter regions, sug-
gesting a role for DNA methylation in the silencing of 
these genes to allow the expression of myelin genes dur-
ing differentiation [104]. As described in MSA and AD 
brain tissue, the increased number of OPCs observed [26, 
65, 93] could be reflective of an inability of the OPCs to 
mature and differentiate into myelinating OLGs, possi-
bly in part due to defective DNA methylation. However, 
further investigations are required to shed light on such 
effects. It is also worth noting that DNA methyltrans-
ferases DNMT1, DNMT3a and DNMT3b have been 
shown to have distinct roles in various aspect of the OLG 
lineage cell cycle, myelination, and in remyelination after 
injury (Fig. 4b) [68, 70, 71, 83, 105].

DNA hydroxymethylation is also dynamic during the 
OLG life cycle, and TET1 is one of the enzymes involved 
in this process (Fig.  4). Slower cell cycle progression of 
OPCs was found in Tet1 knock-out mice, an effect that 

appeared to be largely specific to the OLG lineage com-
pared to neurons and astrocytes [119]. TET1 was also 
found to be implicated in processes of myelin repair 
through the regulation of genes important for the axon-
myelin interface [69]. Interestingly, there is increased 
hydroxymethylation in adult OPCs compared to neo-
natal OPCs in mice, and evidence suggests that TET1 
is essential for myelin repair after damage [69]. As with 
DNMTs, there is evidence for distinct and complex roles 
of the TET enzyme family in different aspects of the OLG 
lineage cell life cycle (Fig.  4b) [69, 119, 120]. Overall, 
these studies indicate that DNA modifications undergo 
dynamic changes between neonatal and adult OPCs and 
are relevant for the decrease in myelinating capacity that 
is observed in ageing OPCs [87].

More research is needed to elucidate further the 
importance of 5mC and 5hmC in OLGs, and to under-
stand the complex roles of DNMTs and the TET family 

Fig. 6  Potential roles for DNA methylation in the dysfunction of oligodendrocytes and myelin in neurodegenerative diseases. Panels illustrate 
different lines of evidence that implicate DNA methylation changes affecting OLGs/OLG-related genes and their relevance to neurodegeneration. 
BIN1—Bridging interactor 1, MOBP—Myelin associated oligodendrocyte protein, OPC—Oligodendrocyte precursor cell, OLG—Oligodendrocyte, 
ROS—Reactive oxygen species. Figure created with BioRender
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of enzymes. This should include investigation of changes 
in their catalytic activities, during OLG differentiation, in 
myelination, and in remyelination after injury.

Oligodendrocyte‑related genes are differentially 
methylated in neurodegenerative diseases
As discussed above, OLG-related genes (e.g. MOBP 
and BIN1) have been associated in GWAS with the risk 
of developing neurodegenerative diseases. In addition, 
MOBP was shown to present aberrant DNA methylation 
in an EWAS of post-mortem MSA white matter tissue 
[10]. Specifically, hypermethylation (i.e. increased meth-
ylation levels) of the promoter region of the gene was 
detected in MSA compared to controls. DNA methyla-
tion changes in MOBP were found even in brain regions 
very mildly affected by MSA pathology (e.g. occipital 
lobe), indicating that these may reflect early changes 
and contribute to disease pathogenesis. The methylation 
status of MOBP in MSA is linked to changes in MOBP 
expression levels [11], and the observed downregula-
tion of this gene is likely driven by the hypermethylation 
of its promoter region. As MOBP protein is involved in 
the morphological differentiation of OLGs [90], changes 
in its expression levels due to aberrant methylation dur-
ing OLG differentiation likely lead to functional impair-
ment of these cells. As another example, BIN1 is the 
second strongest genetic risk factor for late onset AD 
[45, 57, 58] and associations between AD neuropathology 
and the level of methylation at the BIN1 locus have also 
been reported [47, 116], with BIN1 transcript levels being 
associated with β-amyloid load [116]. Given this, and 
that BIN1 has been shown to be predominantly localised 
to white matter in the brain and expressed primarily in 
mature OLGs [86], it is reasonable to hypothesise that 
the involvement of BIN1 gene in disease processes may 
be mediated through DNA methylation changes affecting 
OLGs.

Oligodendrocyte cell types and epigenetic age 
acceleration
DNA methylation changes are known to occur during 
ageing, which is the major risk factor for neurodegen-
eration, with accelerated epigenetic ageing, as measured 
using epigenetic clocks, being reported in neurodegen-
erative diseases [42–44, 81]. Epigenetic clocks allow to 
infer the difference between the biological age, estimated 
using the DNA methylome, and the actual chronological 
age (i.e. epigenetic age acceleration). Age-related changes 
have been described in OLGs, notably the decrease in 
myelinating capacity with increased age [87], but it has 
also been suggested that there is a loss of epigenetic 
memory in these cells [92]. It has been proposed that 
intrinsic changes observed in ageing OLGs could be a 

result of changes on gene expression brought around by 
an altered epigenomic profile [92]. Indeed, a recent study 
investigating DNA methylation-based measures of accel-
erated ageing in post-mortem tissue from different brain 
regions in MSA and controls found that the relative fre-
quency of OLGs in brain tissue is positively correlated 
with epigenetic age acceleration [75]. This relationship 
between OLG proportions and epigenetic age accel-
eration has also been found in some forms of FTLD 
[74]. These findings support a role for OLGs in pushing 
towards increased epigenetic/biological age, suggest-
ing that this cell lineage ages faster than other brain cell 
types.

Vulnerability of oligodendrocyte lineage cells to reactive 
oxygen species via epigenetic modifications
A further role of OLGs (aside from myelination) is their 
involvement in iron equilibrium in the CNS. Iron is key 
for normal CNS function [94], and OLGs are important 
in maintaining brain iron homeostasis [84]. Dysregula-
tion, and, specifically, increased iron levels in the brain 
are associated with neurodegenerative diseases such as 
AD, PD, and MSA [117]. Proposed mechanisms for the 
role of iron in neurodegeneration include increased oxi-
dative stress, possibly due to enhanced generation of 
reactive oxygen species (ROS) associated with increased 
protein aggregation [26, 117]. Given that OLGs are the 
principal iron-containing cells of the brain [21], it is rea-
sonable to hypothesise that aberrant OLG function could 
contribute to neurodegeneration via dysregulation of 
brain iron levels. Indeed, investigations into brain gene 
expression in the context of neurodegeneration with 
brain iron accumulation (NBIA), and in mouse mod-
els of increased brain iron loading, implicate OLGs and 
myelin-related genes [9, 40]. This may well be relevant for 
other neurodegenerative diseases. OPCs and OLGs are 
thought to be more vulnerable to oxidative stress than 
other brain cell types due to factors which include lower 
levels of antioxidant enzymes and free radical scavengers 
[6, 30], as well as their high metabolic requirements [7, 
87]. Excessive oxidative stress can lead to OLG malfunc-
tion through the impairment of effective OLG differen-
tiation [32], with such effects having been reported in 
neurodegenerative diseases [101]. Interestingly, a link 
between DNA methylation changes and presence of ROS 
has been suggested with the finding that increased ROS 
leads to oxidation of 5mC into 5hmC [62], likely lead-
ing to changes in gene expression regulation. Although 
speculative, it could be hypothesised that this proposed 
increase in susceptibility of OPCs to ROS-induced dam-
age compared to other brain cell types could, at least 
in part, be driven by ROS induced alterations in DNA 
methylation in these cells [6, 30, 32]. However, causal 
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relationships between neurodegenerative processes, OPC 
dysfunction, DNA methylation and ROS are still unclear 
and require further investigations.

Concluding remarks
There is an increasing understanding of the importance 
of myelin and OLGs in the pathogenesis of various neu-
rodegenerative diseases, both in those with or without 
obvious OLG pathology. There is mounting evidence 
showing that the efficient development, proliferation, dif-
ferentiation, and maintenance of the OLG lineage cells 
may be disrupted in disease, and that aberrant DNA 
methylation is implicated (Fig. 6). Whether such disease 
associated disruption leads to death of the OLG line-
age cells and consequent demyelination, a decrease in 
their ability to provide trophic support to neurons, or 
another unknown ‘effect’ is still unclear. Thus, a better 
understanding of how human OLG lineage cells function 
in health and disease is needed. Currently, most studies 
of the role of epigenetic mechanisms in OLG function, 
including proliferation, have been carried out in animal 
models, with only limited studies in human OPCs/OLGs. 
It is also worth noting that other factors affecting gene 
expression, not within the scope of this review, including 
histone modifications and RNA methylation, may also 
be important in the life cycle of OLG lineage cells [83, 
105, 115], and it is likely that combined effects from such 
factors contribute to OLG function both in health and 
disease.

Although EWAS have uncovered several aberrantly 
methylated genes across multiple neurodegenerative dis-
eases, most of these studies utilised bulk tissue, limiting 
cell-type specific inferences. However, exciting recent 
advances in cell-type deconvolution algorithms and tech-
niques allowing characterisation of DNA methylation 
changes in purified cell types or even in single cells will 
no doubt enhance the discovery of cell-type specific dis-
ease-associated DNA methylation signatures.

The study of DNA methylation in neurodegenera-
tive diseases is an exciting avenue. On one hand, eluci-
dating pathogenic mechanisms in disease could provide 
targets for therapeutic intervention. On the other hand, 
given that DNA methylation is potentially modifiable, 
and novel techniques to edit DNA methylation in spe-
cific genomic sites are emerging [50, 73, 89, 97], this rein-
forces the importance of knowing where in genome and 
in which cell-types disease-related changes occur, and 
could open new avenues for therapies targeting DNA 
methylation.
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