10,306 research outputs found
Field Theory And Second Renormalization Group For Multifractals In Percolation
The field-theory for multifractals in percolation is reformulated in such a
way that multifractal exponents clearly appear as eigenvalues of a second
renormalization group. The first renormalization group describes geometrical
properties of percolation clusters, while the second-one describes electrical
properties, including noise cumulants. In this context, multifractal exponents
are associated with symmetry-breaking fields in replica space. This provides an
explanation for their observability. It is suggested that multifractal
exponents are ''dominant'' instead of ''relevant'' since there exists an
arbitrary scale factor which can change their sign from positive to negative
without changing the Physics of the problem.Comment: RevTex, 10 page
Epidemiology, Microbiology and Severity of Bronchiolitis in the First Post-Lockdown Cold Season in Three Different Geographical Areas in Italy: A Prospective, Observational Study
The aim of this study was to understand the epidemiology, disease severity, and microbiology of bronchiolitis in Italy during the 2021â2022 cold season, outside of lockdowns. Before COVID-19, the usual bronchiolitis season in Italy would begin in November and end in April, peaking in February. We performed a prospective observational study in four referral pediatric centers located in different geographical areas in Italy (two in the north, one in the center and one in the south). From 1 July 2021 to 31 January 2022, we collected all new clinical diagnoses of bronchiolitis in children younger than two years of age recording demographic, clinical and microbiological data. A total of 657 children with a clinical diagnosis of bronchiolitis were enrolled; 56% children were admitted and 5.9% required PICU admission. The first cases were detected during the summer, peaking in November 2021 and declining into December 2021 with only a few cases detected in January 2022. RSV was the commonest etiological agent, while SARS-CoV-2 was rarely detected and only since the end of December 2021. Disease severity was similar in children with RSV vs. non-RSV bronchiolitis, and in those with a single infectious agent detected compared with children with co-infections. The 2021â2022 bronchiolitis season in Italy started and peaked earlier than the usual pre-pandemic seasons, but had a shorter duration. Importantly, the current bronchiolitis season was not more severe when data were compared with Italian published data, and SARS-CoV-2 was rarely a cause of bronchiolitis in children younger than 24 months of age
Protected area surface extension in Madagascar: Do endemism and threatened species remain useful criteria for site selection ?
The âhotspot approachâ considers that endemism and threatened species are key factors in protected area designation. Three wetland and forest sites have been proposed to be included into Madagascarâs system of protected areas (SAPM â SystĂšme des Aires ProtĂ©gĂ©es de Madagascar). These sites are Manambolomaty (14,701 ha) and Mandrozo (15,145 ha) in the west and Bemanevika (37,041 ha) in the north. Biodiversity inventories of these three sites recorded 243 endemic species comprised of 44 reptiles, 54 amphibians, 104 birds, 23 small mammals, 17 lemurs and one fish. Of these 243 species, 30 are threatened taxa comprising two Critically Endangered (CR), 11 Endangered (EN) and 17 Vulnerable (VU) species. The long term ecological viability of these sites has been shown by population stability of the two Critically Endangered flagship species, the Madagascar fish eagle (Haliaeetus vociferoides) in Manambolomaty and Mandrozo and the recently rediscovered Madagascar pochard (Aythya innotata) in Bemanevika. Other threatened species and high biological diversity also justifies their inclusion into Madagascarâs SAPM
Theoretical model for ultracold molecule formation via adaptive feedback control
We investigate pump-dump photoassociation of ultracold molecules with
amplitude- and phase-modulated femtosecond laser pulses. For this purpose a
perturbative model for the light-matter interaction is developed and combined
with a genetic algorithm for adaptive feedback control of the laser pulse
shapes. The model is applied to the formation of 85Rb2 molecules in a
magneto-optical trap. We find for optimized pulse shapes an improvement for the
formation of ground state molecules by more than a factor of 10 compared to
unshaped pulses at the same pump-dump delay time, and by 40% compared to
unshaped pulses at the respective optimal pump-dump delay time. Since our model
yields directly the spectral amplitudes and phases of the optimized pulses, the
results are directly applicable in pulse shaping experiments
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
The structure of Chariklo's rings from stellar occultations
Two narrow and dense rings (called C1R and C2R) were discovered around the
Centaur object (10199) Chariklo during a stellar occultation observed on 2013
June 3. Following this discovery, we planned observations of several
occultations by Chariklo's system in order to better characterize the physical
properties of the ring and main body. Here, we use 12 successful occulations by
Chariklo observed between 2014 and 2016. They provide ring profiles (physical
width, opacity, edge structure) and constraints on the radii and pole position.
Our new observations are currently consistent with the circular ring solution
and pole position, to within the km formal uncertainty for the ring
radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal
significant width variations from to 7.5 km. The width of the fainter
ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and
outer edges of C1R are consistent with infinitely sharp boundaries, with
typical upper limits of one kilometer for the transition zone between the ring
and empty space. No constraint on the sharpness of C2R's edges is available. A
1 upper limit of m is derived for the equivalent width of
narrow (physical width <4 km) rings up to distances of 12,000 km, counted in
the ring plane
Maxwell's theory on a post-Riemannian spacetime and the equivalence principle
The form of Maxwell's theory is well known in the framework of general
relativity, a fact that is related to the applicability of the principle of
equivalence to electromagnetic phenomena. We pose the question whether this
form changes if torsion and/or nonmetricity fields are allowed for in
spacetime. Starting from the conservation laws of electric charge and magnetic
flux, we recognize that the Maxwell equations themselves remain the same, but
the constitutive law must depend on the metric and, additionally, may depend on
quantities related to torsion and/or nonmetricity. We illustrate our results by
putting an electric charge on top of a spherically symmetric exact solution of
the metric-affine gauge theory of gravity (comprising torsion and
nonmetricity). All this is compared to the recent results of Vandyck.Comment: 9 pages, REVTeX, no figures; minor changes, version to be published
in Class. Quantum Gra
Cosmic microwave background anisotropies in multi-connected flat spaces
This article investigates the signature of the seventeen multi-connected flat
spaces in cosmic microwave background (CMB) maps. For each such space it
recalls a fundamental domain and a set of generating matrices, and then goes on
to find an orthonormal basis for the set of eigenmodes of the Laplace operator
on that space. The basis eigenmodes are expressed as linear combinations of
eigenmodes of the simply connected Euclidean space. A preceding work, which
provides a general method for implementing multi-connected topologies in
standard CMB codes, is then applied to simulate CMB maps and angular power
spectra for each space. Unlike in the 3-torus, the results in most
multi-connected flat spaces depend on the location of the observer. This effect
is discussed in detail. In particular, it is shown that the correlated circles
on a CMB map are generically not back-to-back, so that negative search of
back-to-back circles in the WMAP data does not exclude a vast majority of flat
or nearly flat topologies.Comment: 33 pages, 19 figures, 1 table. Submitted to PR
The Hilbertian Tensor Norm and Entangled Two-Prover Games
We study tensor norms over Banach spaces and their relations to quantum
information theory, in particular their connection with two-prover games. We
consider a version of the Hilbertian tensor norm and its dual
that allow us to consider games with arbitrary output alphabet
sizes. We establish direct-product theorems and prove a generalized
Grothendieck inequality for these tensor norms. Furthermore, we investigate the
connection between the Hilbertian tensor norm and the set of quantum
probability distributions, and show two applications to quantum information
theory: firstly, we give an alternative proof of the perfect parallel
repetition theorem for entangled XOR games; and secondly, we prove a new upper
bound on the ratio between the entangled and the classical value of two-prover
games.Comment: 33 pages, some of the results have been obtained independently in
arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6
rewritten, v3: completely rewritten in order to improve readability; title
changed; references added; published versio
Mesoscopic superpositions of vibronic collective states of N trapped ions
We propose a scalable procedure to generate entangled superpositions of
motional coherent states and electronic states in N trapped ions. Beyond their
fundamental importance, these states may be of interest for quantum information
processing and may be used in experimental studies of decoherence.Comment: Final version, as published in Physical Review Letters. See also
further developments and applications in quant-ph/020207
- âŠ