18 research outputs found

    A genotype-specific, randomized controlled behavioral intervention to improve the neuroemotional outcome of cardiac surgery: study protocol for a randomized controlled trial

    Get PDF
    Contains fulltext : 128590.pdf (publisher's version ) (Open Access)BACKGROUND: Cardiac surgery is one of the most commonly performed surgical procedures worldwide with >700,000 surgeries in 2006 in the US alone. Cardiac surgery results in a considerable exposure to physical and emotional stress; stress-related disorders such as depression or post-traumatic stress disorder are the most common adverse outcomes of cardiac surgery, seen in up to 20% of patients. Using information from a genome-wide association study to characterize genetic effects on emotional memory, we recently identified a single nucleotide polymorphism of the glucocorticoid receptor gene (the Bcll single nucleotide polymorphism) as a significant genetic risk factor for traumatic memories from cardiac surgery and symptoms of post-traumaticstress disorder. The Bcll high-risk genotype (Bcll GG) has a prevalence of 16.6% in patients undergoing cardiac surgery and is associated with increased glucocorticoid receptor signaling under stress. Concomitant animal experiments have confirmed an essential role of glucocorticoid receptor activation for traumatic memory formation during stressful experiences. Early cognitive behavioral intervention has been shown to prevent stress-related disorders after heart surgery. METHODS/DESIGN: The proposed study protocol is based on the above mentioned earlier findings from animal experiments and preclinical studies in volunteers. Patients (n = 872) will be genotyped for the Bcll single nucleotide polymorphism before surgery, which should result in 120 homozygous high-risk carriers of the Bcll GG allele and 240 randomly selected low-risk heterozygous or non-carriers of the single nucleotide polymorphism. All patients will then undergo randomization to either cognitive behavioral intervention or a control intervention consisting of non-specific general information about the role of stress in heart disease. The primary efficacy endpoint will be post-traumatic stress levels at one year after surgery as determined by a standardized questionnaire that has been specifically validated in patients after critical illness. DISCUSSION: The proposed randomized controlled trial intends to demonstrate that a preoperatively administered minimal cognitive behavioral intervention targeted to homozygous carriers of the Bcll *G high-risk allele reduces traumatic memories and post-traumatic stress disorder symptoms after heart surgery to a level seen in non-carriers of the mutation, and thus improves the neuroemotional outcome of cardiac surgery. TRIAL REGISTRATION NUMBER: The trial will be registered at http://www.clinicaltrials.gov/ before commencing with the study

    Stress and Memory: A Selective Review on Recent Developments in the Understanding of Stress Hormone Effects on Memory and Their Clinical Relevance

    No full text
    Item does not contain fulltextStress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential

    Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory

    No full text
    Item does not contain fulltextEmotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmzeta, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory
    corecore