1,634 research outputs found

    HAT-P-55b: A Hot Jupiter Transiting a Sun-like Star

    Full text link
    We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.Comment: 7 pages, 4 figures, accepted for publication in PAS

    HAT-P-56b: An inflated massive Hot Jupiter transiting a bright F star followed up with K2 Campaign 0 observations

    Get PDF
    We report the discovery of HAT-P-56b by the HATNet survey, an inflated hot Jupiter transiting a bright F type star in Field 0 of NASA's K2 mission. We combine ground-based discovery and follow-up light curves with high precision photometry from K2, as well as ground-based radial velocities from TRES on the FLWO 1.5m telescope to determine the physical properties of this system. HAT-P-56b has a mass of 2.18MJ2.18 M_J, radius of 1.47RJ1.47 R_J, and transits its host star on a near-grazing orbit with a period of 2.7908 d. The radius of HAT-P-56b is among the largest known for a planet with Mp>2MJM_p > 2 M_J. The host star has a V-band magnitude of 10.9, mass of 1.30 MM_\odot, and radius of 1.43 RR_\odot. The periodogram of the K2 light curve suggests the star is a γ\gamma Dor variable. HAT-P-56b is an example of a ground-based discovery of a transiting planet, where space-based observations greatly improve the confidence in the confirmation of its planetary nature, and also improve the accuracy of the planetary parameters.Comment: 13 pages, 11 figures, accepted by A

    HAT-P-49b: A 1.7 M_J Planet Transiting a Bright 1.5 M_S F-Star

    Full text link
    We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter- McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.Comment: Accepted to the Astronomical Journa

    Exploring access to end of life care for ethnic minorities with end stage kidney disease through recruitment in action research

    Get PDF
    BACKGROUND: Variation in provision of palliative care in kidney services and practitioner concerns to provide equitable access led to the development of this study which focussed on the perspectives of South Asian patients and their care providers. As people with a South Asian background experience a higher risk of Type 2 Diabetes (T2DM) and end stage kidney failure (ESKF) compared to the majority population but wait longer for a transplant, there is a need for end of life care to be accessible for this group of patients. Furthermore because non English speakers and people at end of life are often excluded from research there is a dearth of research evidence with which to inform service improvement. This paper aims to explore issues relating to the process of recruitment of patients for a research project which contribute to our understanding of access to end of life care for ethnic minority patients in the kidney setting. METHODS: The study employed an action research methodology with interviews and focus groups to capture and reflect on the process of engaging with South Asian patients about end of life care. Researchers and kidney care clinicians on four NHS sites in the UK recruited South Asian patients with ESKF who were requiring end of life care to take part in individual interviews; and other clinicians who provided care to South Asian kidney patients at end of life to take part in focus groups exploring end of life care issues. In action research planning, action and evaluation are interlinked and data were analysed with emergent themes fed back to care providers through the research cycle. Reflections on the process of patient recruitment generated focus group discussions about access which were analysed thematically and reported here. RESULTS: Sixteen patients were recruited to interview and 45 different care providers took part in 14 focus groups across the sites. The process of recruiting patients to interview and subsequent focus group data highlighted some of the key issues concerning access to end of life care. These were: the identification of patients approaching end of life; and their awareness of end of life care; language barriers and informal carers' roles in mediating communication; and contrasting cultures in end of life kidney care. CONCLUSIONS: Reflection on the process of recruitment in this action research study provided insight into the complex scenario of end of life in kidney care. Some of the emerging issues such as the difficulty identifying patients are likely to be common across all patient groups, whilst others concerning language barriers and third party communication are more specific to ethnic minorities. A focus on South Asian ethnicity contributes to better understanding of patient perspectives and generic concepts as well as access to end of life kidney care for this group of patients in the UK. Action research was a useful methodology for achieving this and for informing future research to include informal carers and other ethnic groups.Peer reviewedFinal Published versio

    HAT-P-50b, HAT-P-51b, HAT-P-52b, and HAT-P-53b: Three Transiting Hot Jupiters and a Transiting Hot Saturn From the HATNet Survey

    Full text link
    We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3.1220 days. The planet HAT-P-51b has a mass of 0.31 M_J and a radius of 1.29 R_J, and orbits a V = 13.4 mag, M = 0.98 M_sun, R = 1.04 R_sun star with a period of P = 4.2180 days. The planet HAT-P-52b has a mass of 0.82 M_J and a radius of 1.01 R_J, and orbits a V = 14.1 mag, M = 0.89 M_sun, R = 0.89 R_sun star with a period of P = 2.7536 days. The planet HAT-P-53b has a mass of 1.48 M_J and a radius of 1.32 R_J, and orbits a V = 13.7 mag, M = 1.09 M_sun, R = 1.21 R_sun star with a period of P = 1.9616 days. All four planets are consistent with having circular orbits and have masses and radii measured to better than 10% precision. The low stellar jitter and favorable R_P/R_star ratio for HAT-P-51 make it a promising target for measuring the Rossiter-McLaughlin effect for a Saturn-mass planet.Comment: Submitted to AJ. 20 pages, 9 figures, 5 tables. Data available at http://hatnet.org

    HAT-P-57b: A Short-Period Giant Planet Transiting A Bright Rapidly Rotating A8V Star Confirmed Via Doppler Tomography

    Get PDF
    We present the discovery of HAT-P-57b, a P = 2.4653 day transiting planet around a V = 10.465 +- 0.029 mag, Teff = 7500 +- 250 K main sequence A8V star with a projected rotation velocity of v sin i = 102.1 +- 1.3 km s^-1. We measure the radius of the planet to be R = 1.413 +- 0.054 R_J and, based on RV observations, place a 95% confidence upper limit on its mass of M < 1.85 M_J . Based on theoretical stellar evolution models, the host star has a mass and radius of 1.47 +- 0.12 M_sun, and 1.500 +- 0.050 R_sun, respectively. Spectroscopic observations made with Keck-I/HIRES during a partial transit event show the Doppler shadow of HAT-P-57b moving across the average spectral line profile of HAT-P- 57, confirming the object as a planetary system. We use these observations, together with analytic formulae that we derive for the line profile distortions, to determine the projected angle between the spin axis of HAT-P-57 and the orbital axis of HAT-P-57b. The data permit two possible solutions, with -16.7 deg < lambda < 3.3 deg or 27.6 deg < lambda < 57.4 deg at 95% confidence, and with relative probabilities for the two modes of 26% and 74%, respectively. Adaptive optics imaging with MMT/Clio2 reveals an object located 2.7" from HAT-P-57 consisting of two point sources separated in turn from each other by 0.22". The H and L -band magnitudes of the companion stars are consistent with their being physically associated with HAT-P-57, in which case they are stars of mass 0.61 +- 0.10 M_sun and 0.53 +- 0.08 M_sun. HAT-P-57 is the most rapidly rotating star, and only the fourth main sequence A star, known to host a transiting planet.Comment: 18 pages, 14 figures, 5 tables, accepted for publication in A

    Correction to : Efficacy and Safety of Switching to Ixekizumab in Etanercept Non-Responders: A Subanalysis from Two Phase III Randomized Clinical Trials in Moderate-to-Severe Plaque Psoriasis (UNCOVER-2 and -3)

    Get PDF
    Altres ajuts: NCT01597245 and NCT01646177 and the post hoc analyses of these studies presented in this manuscript were funded by Eli Lilly and Company.Patients with psoriasis who have an inadequate response to one biologic may benefit from switching to a new biologic, such as ixekizumab, a high affinity monoclonal antibody that selectively targets interleukin (IL)-17A. Our aim was to assess the response to ixekizumab in patients with moderate-to-severe plaque psoriasis who did not respond adequately to etanercept using a post-hoc analysis in two phase III studies. For the subanalyses in two phase III trials (UNCOVER-2 and -3), non-response was defined by either failure to have a static physician global assessment (sPGA) of 0/1 in UNCOVER-2 or failure to have at least 75% improvement in psoriasis area and severity index (PASI 75) in UNCOVER-3 at Week 12 of each study. Non-responders treated with twice-weekly etanercept 50 mg in the first 12 weeks received two injections of placebo at Week 12 (4-week wash-out period), followed by ixekizumab every 4 weeks (Q4W) for Weeks 16-60. Non-responders to placebo in the first 12 weeks were administered ixekizumab 160 mg at Week 12, followed by ixekizumab Q4W for Weeks 16-60. After switching to ixekizumab Q4W, a substantial proportion of patients with moderate-to-severe psoriasis who did not respond to etanercept experienced rapid and durable improvement in all efficacy evaluations. Among sPGA 0/1 (UNCOVER-2) and PASI 75 (UNCOVER-3) non-responders to etanercept, 73.0% achieved sPGA 0/1 and 78.2% achieved PASI 75, respectively, after 12 weeks of ixekizumab treatment. Safety profiles in patients switched from etanercept to ixekizumab were similar to those in patients switched from placebo to ixekizumab. Patients who were non-responders to etanercept after 12 weeks, as defined by failure to meet sPGA 0/1 (UNCOVER-2) or PASI 75 (UNCOVER-3), achieved high levels of response 12 weeks after switching to ixekizumab. Studies are registered with ClinicalTrials.gov (NCT01597245 and NCT01646177)

    HAT-P-44b, HAT-P-45b, and HAT-P-46b: Three Transiting Hot Jupiters in Possible Multi-Planet Systems

    Full text link
    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8 and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.39, 0.89, and 0.49 Mjup, and radii of 1.28, 1.43, and 1.28 Rjup. The stellar hosts have masses of 0.94, 1.26, and 1.28 Msun. Each system shows significant systematic variations in its residual radial velocities indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 220 d and a minimum mass of 1.6 Mjup. Due to aliasing we cannot rule out an alternative solution for the outer planet having a period of 438 d and a minimum mass of 3.7 Mjup. For HAT-P-45 at present there is not enough data to justify the additional free parameters included in a multi-planet model, in this case a single-planet solution is preferred, but the required jitter of 22.5 +- 6.3 m/s is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 d and a minimum mass of 2.0 Mjup, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued RV monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.Comment: 21 pages, 10 figures, 14 tables, submitted to A

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity
    corecore