272 research outputs found

    Heterogenised catalysts for the H-transfer reduction reaction of aldehydes: influence of solvent and solvation effects on reaction performances

    Get PDF
    Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al((OPr)-Pr-i)(3)-SiO2, Al((OPr)-Pr-i)(3)-TiO2 and Al((OPr)-Pr-i)(3)-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al((OPr)-Pr-i)(3) catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy

    Lung disease assessment in primary ciliary dyskinesia: a comparison between chest high-field magnetic resonance imaging and high-resolution computed tomography findings

    Get PDF
    Abstract Background Primary ciliary dyskinesia (PCD) is associated with pulmonary involvement that requires periodical assessment. Chest high-resolution computed tomography (HRCT) has become the method of choice to evaluate chronic lung disease, but entails exposure to ionizing radiation. Magnetic resonance imaging (MRI) has been proposed as a potential radiation-free technique in several chest disorders. Aim of our study is to evaluate whether high-field MRI is as effective as HRCT in identifying PCD pulmonary abnormalities. We also analyzed the relationships between the severity and extension of lung disease, and functional data. Methods Thirteen PCD patients (8 children/5 adults; median age, 15.2 yrs) underwent chest HRCT and high-field 3T MRI, spirometry, and deep throat or sputum culture. Images were scored using a modified version of the Helbich system. Results HRCT and MRI total scores were 12 (range, 6–20) and 12 (range, 5–17), respectively. Agreement between HRCT and MRI scores was good or excellent (r > 0.8). HRCT and MRI total scores were significantly related to forced vital capacity (r = -0.5, p = 0.05; and r = -0.7, p = 0.009, respectively) and forced expiratory volume at 1 second (r = -0.6, p = 0.03; and r = -0.7, p = 0.009, respectively). Conclusion Chest high-field 3T MRI appears to be as effective as HRCT in assessing the extent and severity of lung abnormalities in PCD. MRI scores might be used for longitudinal assessment and be an outcome surrogate in future studies.</p

    A Novel Combination of High-Load Omega-3 Lysine Complex (AvailOm®) and Anthocyanins Exerts Beneficial Cardiovascular Effects

    Get PDF
    Omega-3 fatty acids have been shown to exert several beneficial effects in the prevention of cardiovascular and cerebrovascular diseases. The objective of the present study was to analyze the effects of a novel high-load omega-3 lysine complex, AvailOm®, its related constituents and a novel mixture of AvailOm® with specific vasoactive anthocyanins on vascular function in mice resistance artery. Pressure myograph was used to perform vascular reactivity studies. Nitric oxide and oxidative stress were assessed by difluorofluorescein diacetate and dihydroethidium, respectively. Increasing doses of AvailOm® exerted a dose-response vasorelaxation via AMPK-eNOS-mediated signaling. Omega-3 Ethyl Ester was identified as the main bioactive derivative of AvailOm®, being capable of inducing vasorelaxant action to the same extent of entire product. The combination of AvailOm® with a mix of potent vasoactive anthocyanins (C3-glu + DP3-glu + Mal3-glu + Mal3-gal + PEO3-gal), strongly protected mesenteric arteries from vascular dysfunction and oxidative stress evoked by oxidized-LDL. These data demonstrate for the first time the direct effects of AvailOm® on resistance arteries. The evidence that the combination of specific vasoactive anthocyanins and AvailOm® further enhanced the vasculoprotective properties of these compounds, may offer new promising perspectives for preventing the onset of cardiovascular and cerebrovascular events

    Lung structure and function similarities between primary ciliary dyskinesia and mild cystic fibrosis: a pilot study

    Get PDF
    BACKGROUND: Primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) are increasingly compared. There are no chest magnetic resonance imaging (MRI) comparative studies of PCD and CF. We assessed clinical, functional, microbiological and MRI findings in PCD and mild CF patients in order to evaluate different expression of lung disease. METHODS: Twenty PCD (15.1 years) and 20 CF subjects with mild respiratory impairment (16 years, 70% with pancreatic insufficiency) underwent MRI, spirometry, and sputum cultures when clinically stable. MRI was scored using the modified Helbich system. RESULTS: PCD was diagnosed later than CF (9.9 versus 0.6 years, p = 0.03), despite earlier symptoms (0.1 versus 0.6 years, p = 0.02). In the year preceding the study, patients from both groups underwent two systemic antibiotic courses (p = 0.48). MRI total scores were 11.6 ± 0.7 and 9.1 ± 1 in PCD and CF, respectively. FEV1 and FVC Z-scores were -1.75 (range, -4.6-0.7) and -0.6 (-3.9-1.8) in PCD, and -0.9 (range, -5.4-2.3) and -0.3 (-3.4-2.5) in CF, respectively. No difference was found between lung function or structure, despite a higher MRI subscore of collapse/consolidation in PCD versus CF (1.6 ± 0.1 and 0.6 ± 0.2, p < 0.001). These findings were confirmed after data-control for diagnostic delay. Pseudomonas aeruginosa and Staphylococcus aureus were more frequent in CF than in PCD (p = 0.05 and p = 0.003, respectively). CONCLUSIONS: MRI is a valuable radiation-free tool for comparative PCD and CF lung disease assessment. Patients with PCD may exhibit similar MRI and lung function changes as CF subjects with mild pulmonary disease. Delay in PCD diagnosis is unlikely the only determinant of similarities

    From a Medicinal Mushroom Blend a Direct Anticancer Effect on Triple-Negative Breast Cancer: A Preclinical Study on Lung Metastases

    Get PDF
    Bioactive metabolites isolated from medicinal mushrooms (MM) used as supportive treatment in conventional oncology have recently gained interest. Acting as anticancer agents, they interfere with tumor cells and microenvironment (TME), disturbing cancer development/progression. Nonetheless, their action mechanisms still need to be elucidated. Recently, using a 4T1 triple-negative mouse BC model, we demonstrated that supplementation with Micotherapy U-Care, a MM blend, produced a striking reduction of lung metastases density/number, paralleled by decreased inflammation and oxidative stress both in TME and metastases, together with QoL amelioration. We hypothesized that these effects could be due to either a direct anticancer effect and/or to a secondary/indirect impact of Micotherapy U-Care on systemic inflammation/immunomodulation. To address this question, we presently focused on apoptosis/proliferation, investigating specific molecules, i.e., PARP1, p53, BAX, Bcl2, and PCNA, whose critical role in BC is well recognized. We revealed that Micotherapy U-Care is effective to influence balance between cell death and proliferation, which appeared strictly interconnected and inversely related (p53/Bax vs. Bcl2/PARP1/PCNA expression trends). MM blend displayed a direct effect, with different efficacy extent on cancer cells and TME, forcing tumor cells to apoptosis. Yet again, this study supports the potential of MM extracts, as adjuvant supplement in the TNBC management

    Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1–E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme.

    Get PDF
    The native form of the bacterial glutathione transferase B1-1 (EC ) is characterized by one glutathione (GSH) molecule covalently linked to Cys-10. This peculiar disulfide, only found in the Beta and Omega class glutathione S-transferases (GSTs) but absent in all other GSTs, prompts questions about its role and how GSH can be activated and utilized in the reaction normally performed by GSTs. Stopped-flow and spectroscopic experiments suggest that, in the native enzyme (GSTB1-1ox), a second GSH molecule is present, albeit transiently, in the active site. This second GSH binds to the enzyme through a bimolecular interaction followed by a fast thiol-disulfide exchange with the covalently bound GSH. The apparent pK(a) of the non-covalently bound GSH is lowered from 9.0 to 6.4 +/- 0.2 in similar fashion to other GSTs. The reduced form of GSTB1-1 (GSTB1-1red) binds GSH 100-fold faster and also induces a more active deprotonation of the substrate with an apparent pK(a) of 5.2 +/- 0.1. Apparently, the absence of the mixed disulfide does not affect k(cat) and K(m) values in the GST conjugation activity, which is rate-limited by the chemical step both in GSTB1-1red and in GSTB1-1ox. However, GSTB1-1ox follows a steady-state random sequential mechanism whereas a rapid-equilibrium random sequential mechanism is adopted by GSTB1-1red. Remarkably, GSTB1-1ox and GSTB1-1red are equally able to catalyze a glutaredoxin-like catalysis using cysteine S-sulfate and hydroxyethyl disulfide as substrates. Cys-10 is an essential residue in this redox activity, and its replacement by alanine abolishes this enzymatic activity completely. It appears that GSTB1-1 behaves like an "intermediate enzyme" between the thiol-disulfide oxidoreductase and the GST superfamilies

    Structural model of the hUbA1-UbcH10 quaternary complex: In silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    Lipoprotein(a) levels and risk of adverse events after myocardial infarction in patients with and without diabetes

    Get PDF
    Introduction: The aim of this study was to evaluate the association of lipoprotein(a) [Lp(a)] levels with long-term outcome in patients with recent history of myocardial infarction (MI), and to investigate if diabetes may influence this association. Methods: Consecutive MI patients who underwent urgent/emergent coronary angiography from February 2013 to June 2019 were prospectively collected. The primary outcome was the composite of MI recurrence and all-cause death. The propensity score weighting technique was used to account for covariates potentially influencing the relationship between Lp(a) levels and the study outcomes. Results: The study population consisted of 1018 post-MI patients (median age 63 years). Diabetes was reported in 280 patients (27.5%), who showed lower Lp(a) levels than patients without diabetes (p = 0.026). At a median follow-up of 1121 days, the primary outcome was reported in 182 patients (17.9%). At univariable Cox regression analysis, Lp(a) was associated with the risk of the primary outcome in the overall population and in non-diabetic patients, but not in diabetics. The adjusted Cox regression analysis confirmed the independent association between Lp(a) values and the primary outcome in non-diabetic patients, but not in diabetics. Lp(a) levels &gt; 70 mg/dL were independently associated with the risk of the primary outcome in non-diabetic patients (adjusted HR: 2.839; 95% CI, 1.382-5.832), but not in diabetics. Conclusions: In this real-world post-MI population, increasing Lp(a) levels were significantly associated with the risk of recurrent MI and all-cause death, and very high Lp(a) serum concentration independently predicted long-term outcome in non-diabetic patients, but not in diabetics

    Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer

    Get PDF
    Background: Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. Methods: We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. Results: We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. Conclusion: We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting
    • …
    corecore