7,170 research outputs found

    An Empirical Study of Real-World SPARQL Queries

    Get PDF
    Understanding how users tailor their SPARQL queries is crucial when designing query evaluation engines or fine-tuning RDF stores with performance in mind. In this paper we analyze 3 million real-world SPARQL queries extracted from logs of the DBPedia and SWDF public endpoints. We aim at finding which are the most used language elements both from syntactical and structural perspectives, paying special attention to triple patterns and joins, since they are indeed some of the most expensive SPARQL operations at evaluation phase. We have determined that most of the queries are simple and include few triple patterns and joins, being Subject-Subject, Subject-Object and Object-Object the most common join types. The graph patterns are usually star-shaped and despite triple pattern chains exist, they are generally short.Comment: 1st International Workshop on Usage Analysis and the Web of Data (USEWOD2011) in the 20th International World Wide Web Conference (WWW2011), Hyderabad, India, March 28th, 201

    Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Get PDF
    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%.; One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 +/- 5) degrees C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 +/- 0.62) and (3.66 +/- 0.73) for PWR fuel, and (035 +/- 0.07) and (0.51 +/- 0.10) for BWR fuel. (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Stability of the blow-up time and the blow-up set under perturbations

    Get PDF
    In this paper we prove a general result concerning continuity of the blow-up time and the blow-up set for an evolution problem under perturbations. This result is based on some convergence of the perturbations for times smaller than the blow-up time of the unperturbed problem together with uniform bounds on the blow-up rates of the perturbed problems. We also present several examples. Among them we consider changing the special domain in which the heat equation with a power source takes place. We consider rather general perturbations of the domain and show the continuity of the blow- up time. Moreover, we deal with perturbations on the initial condition and on parameters in the equation. Finally, we also present some continuity results for the blow-up se

    Drops with non-circular footprints

    Get PDF
    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. This type of drops is a consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to hysteresis effects of the contact angle since some parts of the contact line are wetting, while others are dewetting. Here, we obtain a peculiar drop shape from the rupture of a long liquid filament sitting on a solid substrate, and analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non--trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier--Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate

    Real-time activity-dependent drug microinjection

    Full text link
    From Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. 18–23 July 2009This work was supported by MEC PHB2007-0013TA, BFU2006-07902/BFI, TIN 2007-65989, CAM S-SEM-0255-2006. RDP was supported by the Brazilian agencies: CAPES, CNPq and FAPESP

    Some bivariate stochastic models arising from group representation theory

    Get PDF
    The aim of this paper is to study some continuous-time bivariate Markov processes arising from group representation theory. The first component (level) can be either discrete (quasi-birth-and-death processes) or continuous (switching diffusion processes), while the second component (phase) will always be discrete and finite. The infinitesimal operators of these processes will be now matrix-valued (either a block tridiagonal matrix or a matrix-valued second-order differential operator). The matrix-valued spherical functions associated to the compact symmetric pair (SU(2)×SU(2),diagSU(2)) will be eigenfunctions of these infinitesimal operators, so we can perform spectral analysis and study directly some probabilistic aspects of these processes. Among the models we study there will be rational extensions of the one-server queue and Wright–Fisher models involving only mutation effects.Fil: de la Iglesia, Manuel D.. Universidad Nacional Autónoma de México; MéxicoFil: Román, Pablo Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentin

    Dynamics of Annihilation II: Fluctuations of Global Quantities

    Get PDF
    We develop a theory for fluctuations and correlations in a gas evolving under ballistic annihilation dynamics. Starting from the hierarchy of equations governing the evolution of microscopic densities in phase space, we subsequently restrict to a regime of spatial homogeneity, and obtain explicit predictions for the fluctuations and time correlation of the total number of particles, total linear momentum and total kinetic energy. Cross-correlations between these quantities are worked out as well. These predictions are successfully tested against Molecular Dynamics and Monte-Carlo simulations. This provides strong support for the theoretical approach developed, including the hydrodynamic treatment of the spectrum of the linearized Boltzmann operator. This article is a companion paper to arXiv:0801.2299 and makes use of the spectral analysis reported there.Comment: 19 page

    Reduced order modeling of three dimensional external aerodynamic flows

    Get PDF
    A method is presented to construct computationally efficient reduced-order models (ROMs) of three-dimensional aerodynamic flows around commercial aircraft components. The method is based on the proper orthogonal decomposition (POD) of a set of steady snapshots, which are calculated using an industrial solver based on some Reynolds averaged Navier-Stokes (RANS) equations. The POD-mode amplitudes are calculated by minimizing a residual defined from the Euler equations, even though the snapshots themselves are calculated from viscous equations. This makes the ROM independent of the peculiarities of the solver used to calculate the snapshots. Also, both the POD modes and the residual are calculated using points in the computational mesh that are concentrated in a close vicinity of the aircraft, which constitute a much smaller number than the total number of mesh points. Despite these simplifications, the method provides quite good approximations of the flow variables distributions in the whole computational domain, including the boundary layer attached to the aircraft surface and the wake. Thus, the method is both robust and computationally efficient, which is checked considering the aerodynamic flow around a horizontal tail plane, in the transonic range 0.4?Mach number?0.8, ?3°?angle of attack?3°
    • …
    corecore