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We develop a theory for fluctuations and correlations in a gas evolving under ballistic annihilation dynamics.
Starting from the hierarchy of equations governing the evolution of microscopic densities in phase space, we
subsequently restrict our attention to a regime of spatial homogeneity, and obtain explicit predictions for the
fluctuations and time correlation of the total number of particles, total linear momentum, and total kinetic
energy. Cross correlations between these quantities are worked out as well. These predictions are successfully
tested against molecular dynamics and Monte Carlo simulations. This provides strong support for the theoret-
ical approach developed, including the hydrodynamic treatment of the spectrum of the linearized Boltzmann
operator. This paper makes use of the spectral analysis reported in the preceding paper �Phys. Rev. E 77,
051127 �2008��.
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I. INTRODUCTION

Systems where particles may react, change chemical or
physical nature, and ultimately disappear, model a rich vari-
ety of phenomena and provide prominent situations to de-
velop and test the foundations of nonequilibrium statistical
mechanics �see, e.g., �2–6� and references therein�. When
reactions are controlled ballistically, the system can be mod-
eled by an assembly of hard spheres or disks which annihi-
late with probability p or collide elastically with probability
1− p every time two particles meet each other �7�. Within the
framework of this probabilistic ballistic annihilation �PBA�
model, most of the work carried out up to now has focused
on the kinetic equations for the one-body distribution func-
tion and the information following from them �7–11�. In par-
ticular, the hydrodynamic equations, with explicit expres-
sions for the transport coefficients, have been derived by
using a generalization of the Chapman-Enskog expansion
�12�. The preceding paper �1�, where we have established the
hydrodynamic description in the context of the eigenfunc-
tions and eigenvalues of the linearized Boltzmann collision
operator, falls in this vein. Within this formalism, the condi-
tions in which the hydrodynamic description is expected to
apply are somewhat more transparent, and can be expressed
in terms of some properties of the linearized Boltzmann col-
lision operator.

In the present paper, the goal is to go beyond the study of
one-body quantities; the focus is on fluctuations and correla-
tions. To this end, we use the tools and ideas developed in
the context of the linearized Boltzmann equation. The dy-
namical behavior of the correlations in the dilute limit can
indeed be obtained in terms of the linearized Boltzmann col-
lision operator. The study of correlations in the PBA model
allows one to go beyond the description at the level of aver-
age values, and to characterize how global magnitudes �such
as the total number of particles or the total energy� fluctuate
around their average. It has already been shown in other
classes of dissipative systems, such as in granular systems,
that the knowledge of fluctuations is relevant in order to

understand the behavior of the system when vortices or clus-
ters develop �13,14�, or even in simpler situations where the
system is still homogeneous �15,16�. The main goal of this
paper is to formulate a theory of fluctuations for the PBA
model in the dilute limit and to apply it to one of the simplest
possible states, namely, the homogeneous decay state, ex-
ploiting its scaling properties. This will allow us to obtain
explicit expressions for the distributions characterizing the
velocity correlations in the system, and to compute the sta-
tistics of the total number of particles, total momentum, and
total energy, which decrease monotonically due to the anni-
hilation process.

The paper is organized as follows. In Sec. II, we present
the general framework of the hierarchy method �17� which
allows us to write the evolution equations of correlation
functions. The specific case of the homogeneous decay state
is considered in Sec. III, where the scaling properties of this
state are used to simplify the equations. After briefly recall-
ing in Sec. IV how fluctuations and correlations of global
observables can be computed from the knowledge of the
two-particle correlation functions, we first consider in Sec. V
the correlation functions at equal time, which give access to
the fluctuations of the total number of particles, total mo-
mentum, and total energy. We obtain theoretical predictions
for the asymptotic scaling regime as well as for the short-
time behavior, and we test these predictions against numeri-
cal simulations �both molecular dynamics and Monte Carlo�.
In Sec. VI, we generalize our results to the two-time corre-
lation functions and compare also to numerical simulations.
Finally, Sec. VII contains some discussions of the results and
our conclusions. For the sake of readability, this paper con-
tains some overlap with its companion �1�. Repetitions have
been kept to a minimum though, and we therefore refer to �1�
for several technical details.

II. GENERAL FRAMEWORK

The system we consider consists of a dilute gas of iden-
tical smooth hard spheres or disks of mass m and diameter �,
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moving ballistically in dimension d. The particles are sup-
posed to undergo only binary collisions. When two particles
collide they annihilate with probability p or collide elasti-
cally with probability 1− p. In this probabilistic ballistic an-
nihilation, there is therefore no conserved quantity �except
for p=0� and the number of particles decreases steadily. In
this section, we will show how to obtain evolution equations
for the correlation functions in this system. The general idea
of the method is to derive a closed set of equations for the
distribution functions describing the fluctuations by using the
same kind of approximations as needed to derive the kinetic
equation, in our case the Boltzmann equation. In this way, a
unified formalism provides the usual kinetic equation as well
as evolution equations for the one- and two-time correla-
tions.

Let Xj ��R j�t� ,V j�t�� denote the position and velocity of
particle j in the system at time t. Both, R j�t� and V j�t� are
parametric functions of the initial positions and velocities of
all particles. Microscopic one- and two-particle densities in
the phase space are defined by

F1�x1,t� = �
i=1

N

��x1 − Xi�t�� , �1�

F2�x1,x2,t� = �
i=1

N

�
i�j

N

��x1 − Xi�t����x2 − Xj�t�� , �2�

and higher-order functions can similarly be defined. Here
and in the following, the lower-case variables xi��ri ,vi� are
field variables referring to a particular point in phase space.

The initial state of the system is characterized by a point
in phase space, ���X1 , . . . ,XN�, which is chosen at random
according to a probability ��� ,0�. When the notation 	G

��d� G������ ,0� is introduced for the average over the
initial conditions, the averages of the microscopic densities
Fs�x1 , . . . ,xs , t� over ��� ,0� are the usual one-time reduced
distribution functions

fs�x1, . . . ,xs,t� = 	Fs�x1, . . . ,xs,t�
 . �3�

Similarly, two-time reduced distribution functions can also
be defined in terms of the microscopic densities as

fr,s�x1, . . . ,xr,t;x1�, . . . ,xs�,t��

= 	Fr�x1, . . . ,xr,t�Fs�x1�, . . . ,xs�,t��
 . �4�

For simplicity we will consider t� t��0 in the following.
We now introduce the two-particle correlation functions

through the usual cluster expansion. The one-time correlation
function g2 and the two-time correlation function h1,1 are
then defined by

f2�x1,x2,t� = f1�x1,t�f1�x2,t� + g2�x1,x2,t� , �5�

f1,1�x1,t;x2,t�� = f1�x1,t�f1�x2,t�� + h1,1�x1,t;x2,t�� . �6�

It is easy to show from the definitions of f1, f2, and f1,1 that

h1,1�x1,t;x2,t� = g2�x1,x2,t� + ��x1 − x2�f1�x1,t� . �7�

The case of deterministic annihilation �p=1� was considered
in Ref. �10�. The hierarchy of equations for the reduced dis-

tribution functions is then shown to be similar to the one
describing elastic collisions, once the binary elastic collision
operator is replaced by the operator describing annihilating
collisions. In the PBA case, assuming molecular chaos, i.e.,
that no correlations exist between colliding particles, the
equation for f1�x1 , t� is the Boltzmann equation

� �

�t
+ L�0��x1�
 f1�x1,t� = J�f1, f1� , �8�

where

L�0��x1� = v1 ·
�

�r1
, �9�

J�f1, f1� =� dx2��r12�T̄0�v1,v2�f1�x1,t�f1�x2,t� , �10�

and

T̄0�v1,v2� = �d−1� d�̂��v12 · �̂��v12 · �̂�

	��1 − p��b�
−1 − 1� − p� , �11�

is the PBA binary collision operator. In the above expres-
sions v12=v1−v2 is the relative velocity, r12=r1−r2 the rela-
tive position, � the Heaviside function, �̂ a unit vector join-
ing the centers of two particles at collision, and b�

−1 an
operator that replaces all the velocities v1 and v2 appearing to
its right by the precollisional values v1

� and v2
�,

b�
−1v1 � v1

� = v1 − �v12 · �̂��̂ , �12�

b�
−1v2 � v2

� = v2 + �v12 · �̂��̂ . �13�

The equation for the correlation function g2 can be obtained
under the same hypothesis required to derive the Boltzmann
equation, following the same lines as in Ref. �18� in the case
of inelastically colliding particles, as

� �

�t
+ L�0��x1� + L�0��x2� − K�x1,t� − K�x2,t�
g2�x1,x2,t�

= ��r12�T̄0�v1,v2�f1�x1,t�f1�x2,t� , �14�

where we have introduced the linear operator K�xi , t�,

K�xi,t� =� dx3��ri3�T̄0�vi,v3��1 + Pi3�f1�x3,t� , �15�

and where the permutation operator Pab interchanges the la-
bels of particles a and b in the quantities on which it acts.

Finally, the evolution equation for h1,1 reads

� �

�t
+ L�0��x1� − K�x1,t�
h1,1�x1,t;x2,t�� = 0, t � t�,

�16�

which has to be solved with the initial condition �7�,
h1,1�x1 , t� ;x2 , t��=g2�x1 ,x2 , t��+��x1−x2�f1�x1 , t��.

The equations for the correlation functions h1,1 and g2
contain a part corresponding to free streaming and another
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one that corresponds to collisions. In particular, the evolution
of the one-time correlation function g2 due to collisions has
two parts: one due to collisions of particle 1 or 2 �corre-
sponding to the indices of the correlation function� with a
third particle, which is governed by the Boltzmann collision
operator; and a second one, due to collisions of particle 1
with particle 2, which can be written in terms of the one-
particle distribution function as a consequence of the mo-
lecular chaos hypothesis. In fact, as in the case of the inelas-
tic granular gas �18�, the only difference between the
evolution equations of the correlation functions for the PBA
and for a system of elastic particles lies in the substitution of
the elastic binary collision operator by the operator for the

PBA model, T̄0�v1 ,v2�. However, this does not give any a
priori guarantee on the range of validity of these equations.
This prescription, i.e., how small the density of the system
must be so that the above kinetic equations provide an accu-
rate description, might depend on the parameter p, and also
on the particular state being considered.

We will see in Sec. IV how the knowledge of h1,1 and g2
allows us to obtain the correlation functions of any observ-
able that is a function of the particle positions in phase space.

III. HOMOGENEOUS DECAY STATE

As recalled in the preceding paper �1�, the Boltzmann
equation for the PBA model �8� admits a particular solution
fH�v , t� describing a spatially homogeneous decay state
�HDS�, in which all the time dependence is contained in the
evolution of the density nH�t� and the temperature TH�t�,
which are defined as in standard kinetic theory as

nH�t� =� dv fH�v,t�,
d

2
nH�t�TH�t� =� dv

m

2
v2fH�v,t� .

�17�

Although there exists no rigorous proof of its stability nor of
the fact that such a state should be approached from arbitrary
initial conditions, numerical results obtained by molecular
dynamic simulations and by the direct Monte Carlo method
strongly support the existence of such a homogeneous solu-
tion �7,9�. In this section, we review for completeness the
evolution equation of the one-particle distribution function
and obtain the equations for adequately rescaled correlation
functions. All quantities concerning this homogeneous decay
state will be labeled by an index H.

In the HDS, the one-body distribution function does not
depend on space and follows the scaling form �10�

fH�v,t� =
nH�t�
vH

d �t�

H�c� , �18�

where nH�t� is the uniform density, vH�t� is the thermal �root-
mean-square� velocity related to the granular temperature
TH�t� by

vH�t� = �2TH�t�
m


1/2

, �19�

and 
�c� is an isotropic function depending only on the
modulus c= �c� of the rescaled velocity c=v /vH�t�. Moreover,
the density and temperature fields evolve according to �12�

dnH�t�
dt

= − p�H�t��nnH�t� , �20�

dTH�t�
dt

= − p�H�t��TTH�t� , �21�

where �H�t� is the collision frequency of the corresponding
hard-sphere fluid in equilibrium �with same temperature and
density�

�H�t� =
nH�t�TH

1/2�t��d−1

m1/2
8
d−1/2

�d + 2���d/2�
, �22�

and the dimensionless decay rates �n and �T are functionals
of the distribution function:

p�n = −
�

2
� dc1� dc2T�c1,c2�
H�c1�
H�c2� , �23�

p�T = −
�

2
� dc1� dc2�2c1

2

d
− 1
T�c1,c2�
H�c1�
H�c2� .

�24�

In these expressions, �, which does not depend on time, is
given by �=2nH�t�vH�t��d−1 /�H�t�= �d+2��2��d /2� /
�4
�d−1�/2�, and the binary collision operator T�c1 ,c2� takes
the form

T�c1,c2� =� d�̂ ��c12 · �̂��c12 · �̂���1 − p�b�
−1 − 1� .

�25�

Finally, the scaled distribution function 
H�c� obeys the
equation

p��d�T − 2�n� + �Tc1 ·
�

�c1
�
H�c1�

= �� dc2T�c1,c2�
H�c1�
H�c2� . �26�

The operator b�
−1 in the last equation is defined again by Eqs.

�12� and �13�, but substituting �v1 ,v2� by �c1 ,c2�. The ana-
lytical form of 
H is not known, but its behavior at large and
small velocities has been determined �9,10�. As in the pre-
ceding paper �1�, we will use here the approximate form of
the distribution function in the so-called first Sonine approxi-
mation, which is valid for velocities in the thermal region,
and all the functionals of 
H�c�, like the decay rates and the
transport coefficients, will be evaluated in this approximation
�7,9�.

Considering the scaling form for the one-particle distribu-
tion function, it is convenient to introduce the rescaled cor-
relation function g̃H through
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g2,H�x1,x2,t� =
nH�t�
vH

2d�t�
g̃H��,r12,c1,c2� , �27�

where we have taken into account that the system is invariant
under space translation, so that g2,H depends on r12=r1−r2
and not on r1 and r2 separately. The dimensionless time scale
�,

� =
1

2
�

0

t

dt��H�t�� , �28�

is proportional to the number of collisions in the time inter-
val �0, t�. The equation for the reduced function g̃H in these
units reads then

�−
�

��
+ ��c1� + ��c2� − 2p�n − lH���c12 ·

�

�r12



	g̃H��,r12,c1,c2� = − ��r12��T�c1,c2�
H�c1�
H�c2� ,

�29�

where we have also introduced the length scale lH�t�
=2vH�t� /�H�t�, which is proportional to the instantaneous
mean free path, and the linearized Boltzmann operator �see
previous paper�

��ci�h�ci� = �� dc3T�ci,c3��1 + Pi3�
H�c3�h�ci�

+ p�2�n − d�T�h�ci� − p�Tci ·
�

�ci
h�ci� . �30�

Similarly, we define a rescaled two-time correlation function

h̃H through

h1,1,H�x1,t;x2,t�� =
nH�t�

vH
d �t�vH

d �t��
h̃H�r12;c1,�;c2,��� , �31�

and obtain the following evolution equation:

�

��
h̃H�r12;c1,�;c2,���

= ���c1� − lH���c1 ·
�

�r1

h̃H�r12;c1,�;c2,��� , �32�

with

h̃H�r12;c1,�;c2,�� = g̃H��,r12,c1,c2� + ��c1 − c2���r12�
H�c1� .

It is interesting to note how, in this representation, all the
time dependence due to the reference state is absorbed in the
free streaming term through the function lH���, proportional
to the mean free path. The evolution of the correlation func-
tions, moreover, will be determined by the properties of the
linearized Boltzmann operator �, which we have already
studied in the preceding paper �1� and which we will recall in
Sec. V.

IV. FROM PARTICLE CORRELATION FUNCTIONS
TO CORRELATIONS AND FLUCTUATIONS

OF GLOBAL MAGNITUDES

In this section, we will show how the previously pre-
sented framework for correlation functions will allow us to
study the fluctuations and correlations of global quantities
for a PBA system in the homogeneous decay state. In par-
ticular, we will focus on the total number of particles N, the
total momentum P, and the total energy E.

Consider indeed two dynamical variables of the form

A���t�� = �
i=1

N

a�Vi� =� dx1a�v1�F1�x1,t� ,

B���t�� = �
i=1

N

b�Vi� =� dx2b�v2�F1�x2,t� , �33�

where a and b are functions of the particle velocities Vi, and
F1�x1 , t� is the microscopic density in phase space �1�. Tak-
ing a=1, a=v, and a=mv2 /2 yields for A the total number
of particles N, the total momentum P, and the total kinetic
energy E, respectively. The deviations �A�t�=A�t�− 	A�t�
H
and �B�t�=B�t�− 	B�t�
H of A or B from their average values
in the HDS �denoted by 	¯
H�, define the fluctuations of
both magnitudes, which have average zero and correlations

	�A�t��B�t��
H = 	A�t�B�t��
H − 	A�t�
H	B�t��
H. �34�

It is then straightforward to use the definition of the two-time
correlation function h1,1 in Eq. �6�, to obtain

	�A�t��B�t��
H =� dr1� dv1� dr2� dv2a�v1�b�v2�

	h1,1,H�r1,v1,t;r2,v2,t�� . �35�

In particular, for t= t�, this leads to

	�A�t��B�t�
H = V� dv a�v�b�v�fH�v,t� + V� dv1� dv2

	a�v1�b�v2�� dr12g2,H�r12,v1,v2,t� , �36�

where V=�dr1 is the total volume of the system. These for-
mulas show how the correlations of two different global
magnitudes are determined by the one-particle distribution
function and by the correlation functions. The one-particle
distribution function is known in the HDS in the first Sonine
approximation �7,9�.

V. FLUCTUATIONS IN THE HDS

Let us focus in this section on the one-time correlation
function g̃H. We will only need functions a and b which
depend on the velocity degrees of freedom, so that it is con-
venient to integrate out the spatial dependence by introduc-
ing

�H��,c1,c2� � � dr12g̃H��,r12,c1,c2� , �37�

whose evolution is obtained from �29� as
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�−
�

��
+ ��c1� + ��c2� − 2p�n
�H��,c1,c2�

= − �T�c1,c2�
H�c1�
H�c2� . �38�

Given an initial condition �H�0,c1 ,c2�, this Eq. �38� can be
formally integrated as

�H��,c1,c2�

= e���c1�+��c2�−2p�n���H�0,c1,c2� + �
0

�

d��

	e��−������c1�+��c2�−2p�n��T�c1,c2�
H�c1�
H�c2�

= e���c1�+��c2�−2p�n����H�0,c1,c2�−�H
s �c1,c2��+�H

s �c1,c2�,
�39�

where �H
s �c1 ,c2� is the solution of

���c1� + ��c2� − 2p�n��H
s �c1,c2� = − �T�c1,c2�
H�c1�
H�c2� ,

�40�

where we implicitly assumed that � is invertible. This hap-
pens to be the case; see below. The spectral properties of the
linearized Boltzmann operator � are thus crucial for the
evaluation of �H. We therefore start by recalling these prop-
erties.

A. Spectral properties of �

In our companion paper �1�, we have analyzed the eigen-
value problem associated with the linearized Boltzmann op-
erator �,

��c����c� = �����c� . �41�

We have in fact restricted ourselves to the hydrodynamic part
of �, defined by those eigenvalues of the balance equations
for the number density, momentum, and temperature follow-
ing from the homogeneous linearized Boltzmann equation.
Such eigenvalues are �12�

�1 = 0, �2 = − p��T + 2�n�, �3 = p�T. �42�

Although we were not able to prove that these eigenvalues
are indeed the hydrodynamic ones, the self-consistency of
the resulting description and the successful comparison with
numerical simulations have validated this assumption �1�. In
the previous paper we also obtained the corresponding eigen-
functions

�1�c� = 
H�c1� +
�

�c
· �c
H�c�� , �43�

�2�c� = z
H�c� −
�

�c
· �c
H�c�� , �44�

�3�c� = −
�
H�c�

�c
, �45�

with z=
2�n

�T
a function of the probability of annihilation, p.

The eigenvalue �3 is d-fold degenerate and we denote by �3i,

i=1, . . . ,d, the corresponding eigenvectors. The scalar prod-
uct of two functions f�c� and g�c� is defined as

	f �g
 � � dc 
H
−1�c�f��c�g�c� , �46�

f� being the complex conjugate of f . The eigenfunctions
�� given in �43�–�45� are not orthogonal, as a consequence
of the operator � being non-Hermitian in the associated
Hilbert space. On the other hand, it is easily verified that

the set of functions ��̄1 ; �̄2 ;�3�= �
H�c�− z
1+z � 1

2 + c2

d �
H�c� ;
1

1+z � 1
2 + c2

d �
H�c� ;c
H�c�� satisfy the biorthogonality condi-

tion 	�̄� ����
=��,��, for �,��=1,2 ,3.
The eigenfunctions of the operator ���c1�+��c2�−2p�n�

that appear in Eq. �40� are then easily seen to be
��1

�c1���2
�c2�, with

���c1� + ��c2� − 2p�n���1
�c1���2

�c2�

= ���1
+ ��2

− 2p�n���1
�c1���2

�c2� . �47�

Since �n��T �12�, and under the assumption that the norms
of the “nonhydrodynamic” eigenvalues are always greater
than the hydrodynamic ones, the eigenvalues of ���c1�
+��c2�−2p�n� are therefore all negative. This has the impor-
tant consequence that the exponential term in �39� decays to
zero and that the large-time limit of �H�� ,c1 ,c2� is
�H

s �c1 ,c2�, the solution of Eq. �40�.

B. Hydrodynamic part of the correlation functions

Obtaining the full spectrum of � is a formidable task. We
will here assume, as in the preceding paper �1�, that the ki-
netic �nonhydrodynamic� modes have a fast decay, and work
in the hydrodynamic subspace spanned by the functions ��

defined in the previous section. With that purpose, we gen-
eralize the definition of the scalar product given in �46� to
two-velocity functions by

	f�c1,c2��g�c1,c2�


� � dc1� dc2
H
−1�c1�
H

−1�c2�f��c1,c2�g�c1,c2� .

�48�

This allows us to define a projector operator P12 onto the
space spanned by the functions ��1

�c1���2
�c2� as

P12f�c1,c2�

� �
�1=1

3

�
�2=1

3

	�̄�1
�c1��̄�2

�c2��f�c1,c2�
��1
�c1���2

�c2� ,

�49�

and the hydrodynamic parts of �H�� ,c1 ,c2� and �H
s �c1 ,c2�

are by definition

�H
�h���,c1,c2� � P12�H��,c1,c2�

= �
�1,�2=1

3

a�1,�2
�����1

�c1���2
�c2� , �50�
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�H
s�h��c1,c2� � P12�H

s �c1,c2� = �
�1,�2=1

3

a�1,�2

s ��1
�c1���2

�c2� .

�51�

We can now obtain a closed equation for �H
�h� by applying the

operator P12 on both sides of Eqs. �39� and �40�, under the
additional assumption that

P12��ci� = P12��ci�P12. �52�

A theoretical estimation a priori of the accuracy of this ap-
proximation would require more knowledge than is available
at present about the spectrum of ��c� and its adjoint. There-
fore, it will be taken as a working hypothesis, to be validated
later on by comparing the predictions it leads to with the
results from numerical simulations of the system. It is worth
emphasizing that, since � leaves the hydrodynamic subspace
invariant, Eq. �52� is equivalent to the commutation relation
P12�=�P12. Proceeding further, we obtain from �39�

�H
�h���,c1,c2�

= e���c1�+��c2�−2p�n��P12��H�0,c1,c2� − �H
s �c1,c2��

+ P12�H
s �c1,c2�

= �
�1,�2=1

3

�A�1,�2
e���1

+��2
−2p�n�� + a�1,�2

s ���1
�c1���2

�c2� ,

�53�

where we have introduced A�1,�2
=a�1,�2

�0�−a�1,�2

s . We show
in Appendix A how to obtain explicit formulas for the coef-
ficients a�1,�2

s in terms of the cooling rates �n and �T and
other coefficients, which are also functionals of the one-time
distribution function 
H. The values of a�1,�2

�0� depend on
the initial condition �H�0,c1 ,c2�. For the specific case in
which the variables N, P, and E do not fluctuate at t=0, and
taking into account that the system is in the HDS, the coef-
ficients a�1,�2

�0� are calculated in Appendix B.

C. Hydrodynamic approximation for global fluctuations

In this section we compute the correlation functions of
the global observables by replacing �H implicitly appearing
in �36� by its hydrodynamic part �H

�h�. This can be done by
invoking the relation

	�̄�1
�c1��̄�2

�c2��f�c1,c2�
 = 	�̄�1
�c1��̄�2

�c2��f �h��c1,c2��
 , �54�

for �i=1,2 ,3. However, it must be stressed that the theoret-
ical prediction for �H

�h� in Eq. �53� has been calculated using
the approximation �52�.

If we substitute a�v�=1 and b�v�=1 in �36�, we obtain for
the fluctuations of the number of particles

	�N2���
H = NH����� dc 
H�c� +� dc1� dc2�H
�h���,c1,c2�� ,

�55�

where we have introduced the notation NH�	N
H. In order
to calculate the fluctuations of the total momentum we sub-
stitute a�v�=vi and b�v�=v j in Eq. �36� and obtain

	�Pi����Pj���
H = NH���vH
2 ����� dccicj
H�c�

+� dc1� dc2c1ic2j�H
�h���,c1,c2�� .

�56�

For the energy we substitute a�v�=b�v�= 1
2mv2 so that we

have

	�E2���
H =
m2

4
NH���vH

4 ����� dc c4
H�c�

+� dc1� dc2c1
2c2

2�H
�h���,c1,c2�� . �57�

Finally, we can calculate the correlation between �N and �E
by taking a�v�=1 and b�v�= 1

2mv2

	�N����E���
H =
m

2
NH���vH

2 ����� dcc2
H�c�

+� dc1� dc2c2
2�H

�h���,c1,c2�� . �58�

After some algebra, we obtain

	�N2���
H = NH����1 + a1,1
s + 2za1,2

s + z2a2,2
s + A1,1e−2p�n�

+ 2zA1,2e−p��T+4�n�� + z2A2,2e−2p��T+3�n��� , �59�

	�Pi����Pj���
H = �ijNH���vH
2 ����1

2
+ a3i,3i

s 
�1 − e−2p��n−�T��� ,

�60�

	�E2���
H =
m2

4
NH���vH

4 ����d�d + 2�
4

�1 + a2� +
d2

4
a1,1

s

− d2�1 +
z

2

a1,2

s + d2�1 +
z

2

2

+
d2

4
A1,1e−2p�n�

− d2�1 +
z

2

A1,2e−p��T+4�n��

+ d2�1 +
z

2

2

A2,2e−2p��T+3�n��� , �61�

and

	�N����E���
H =
m

2
NH���vH

2 ����d

2
−

d

2
a1,1

s + da1,2
s

+ dz�1 +
z

2

a2,2

s −
d

2
A1,1e−2p�n�

+ dA1,2e−p��T+4�n��

+ dz�1 +
z

2

A2,2e−2p��T+3�n��� , �62�
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where a2 is related to the fourth moment of 
H�c� through
�dc c4
H�c�= d�d+2�

4 �1+a2�, and has been evaluated in the
first Sonine approximation in �10�. All the functions a�,�

s and
A�,� are evaluated in the Appendixes A and B.

At this point, it is important to note that the Eqs.
�59�–�62� have been obtained under the assumption that the
system is in the homogeneous decay state at all times, i.e.,
that the one-particle distribution function is 
H�c� for the
whole time evolution. For p�1, if we start with an arbitrary
initial condition, numerical simulations show that, after a
few collisions, the distribution function reaches the scaling
regime given by Eq. �18�. Then, the evolution of �H

�h� is given
by �53� and one expects that the same correlation functions
�59�–�62� will be obtained in the long-time limit, indepen-
dently of the initial condition. This will be confirmed in the
next section by numerical simulations.

Equations �59�–�62� lead to a certain number of theo-
retical predictions. In particular, they imply that the
ratios 	�N2���
 /NH���, 	�E2���
 / �NH���vH

4 ����, 	�Pi
2���
 /

�NH���vH
2 ����, and 	�N����E���
 / �NH���vH

2 ���� reach station-
ary values at large times. The approach to these stationary
values is exponential in �, and is slower for the correlations
of the total momentum, since the argument of the exponen-
tial is p��n−�T��, while the other quantities evolve on faster
time scales.

D. Numerical simulations

We now compare our theoretical predictions with the re-
sults of molecular dynamics �MD� and direct simulation
Monte Carlo �DSMC� calculations of a freely evolving sys-
tem of N hard disks of diameter � which annihilate with
probability p or collide elastically with probability 1− p ev-
ery time two particles meet each other. In the MD case, the
particles were localized in a square box of size L with peri-
odic boundary conditions. The event-driven algorithm �19�
has been used and the initial density has been chosen low
enough to be always in the dilute limit. The parameters for
all the MD simulations were N�0�=105, nH�0��2=0.05,
TH�0�=1, and 0� p�1. In the case of the DSMC simula-
tions we have used Bird’s algorithm �20� with the same val-
ues of the parameters, except that the density that plays no
role. The initial velocity distribution is a Maxwellian in both
cases. We have measured the time evolution of the total num-
ber of particles and the total energy, averaging the data over
various initial conditions �the total momentum fluctuates
around zero�. We first checked that the Eqs. �20� and �21�,
with the theoretical predictions derived in �10� for the cool-
ing rates, correctly describe the decay of the average global
quantities. In the same way, we have obtained the averaged
values of N2�t�, E2�t�, Pi

2�t�, and N�t�E�t� �the correlations
between Pi and N or E are zero�.

Figures 1–3 show the time evolution of the various one-
time correlation functions considered, for p=0.5 and 0.8.
The DSMC results have been averaged over 4000 trajectories
while the MD simulations have been averaged over 150 tra-
jectories �the DSMC method being computationally less
expensive, it is then possible to average over a larger number
of initial conditions than for the MD simulations�. The

dashed lines are the theoretical predictions, Eqs. �59�–�62�.
Note, however, that the system is not initially in the HDS;
the initial distribution function is a Maxwellian and not 
H.
Nevertheless, as the difference between these two distribu-
tions is very small �at least for thermal velocities since a2
�0.1� and as the stationary values depend very weakly on p,
Eqs. �59�–�62� predict quite well the time evolution mea-
sured in the simulations. The ratios 	�N2���
 /NH���,
	�E2���
 / �NH���vH

4 ����, and 	�N����E���
 / �NH���vH
2 ����

reach stationary values as predicted. The fluctuations of the
total momentum evolve more slowly, as also predicted, and
the stationary value of 	�Pi

2���
 / �NH���vH
2 ���� is barely

reached. Note that �=4 corresponds for p=0.5 to a total
number of particles at the end of the simulation N�1700.

We have performed simulations starting with other initial
conditions further from the HDS. The initial velocity distri-
bution function has been chosen as a constant function in a
square centered in the origin in the velocity space such that
the initial temperature is unity. As seen in Figs. 4 and 5, we
obtain a different short-time evolution but the scaled mo-
ments still converge toward the HDS values, which are rep-
resented by the dashed lines. The convergence is slower as
we increase the value of p, and 	�E2���
 / �NH���vH

4 ����,
whose magnitude depends on the higher moments of the ve-
locity distribution, is the most affected.

Figures 6 and 7 show the comparison between the station-
ary values of the various ratios measured in the simulations
and the theoretical predictions in Eq. �59�–�62� at large �.
The agreement is very good for all values investigated.

We have also computed the probability distribution for the
number of particles, energy, and momentum. As we can see
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FIG. 1. �Color online� Scaled second moment of the fluctuations
as a function of � for a system with p=0.8. These results are from
DSMC simulations and have been averaged over 4000 trajectories.
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in Fig. 8, where we have considered a system with p=0.5,
they are correctly described by a Gaussian distribution. The
figure displays the distribution at four different times, show-
ing that the shape of the probability distributions does not
vary during the dynamical evolution. Similar results have
been obtained for the probability distribution of the total mo-
mentum.

VI. TWO-TIME CORRELATION FUNCTION IN THE HDS

In this section, we study the two-time correlation function
of the global quantities in the HDS. With this aim, we con-
sider two dynamical variables A�t� and B�t� as in �33�, and
compute the correlations 	�A�t��B�t��
H for t� t�, which are
obtained from h1,1,H through Eq. �35�.

As in the previous section, we start by integrating out the
spatial degrees of freedom and consider

�H��,��,c1,c2� � � dr12h̃H�r12;c1,�;c2,��� , �63�

whose evolution equation is obtained by integrating �32�
over space variables,

�

��
�H��,��,c1,c2� = ��c1��H��,��,c1,c2� . �64�

This equation has to be solved with the initial condition

�H���,��,c1,c2� = 
H�c1���c1 − c2� + �H���,c1,c2� , �65�

where we have taken into account the scaling of fH �18� and
g2,H �27�. Then, using the approximation �52�, we obtain

P12�H��,��,c1,c2�

= e��c1���−���P12�H���,��,c1,c2�

= 	�̄1�c1���H���,��,c1,c2�
�1�c1�

+ 	�̄2�c1���H���,��,c1,c2�
�2�c1�e−p��T+2�n���−���

+ �
i

	�̄3i�c1���H���,��,c1,c2�
�3i�c1�ep�T��−���.

�66�

Note that, assuming that the hydrodynamic eigenvalues are
the biggest ones, we can deduce in the long-time limit that
P12�H�� ,��� is a linear combination of the exponentials writ-
ten above. Hence, the approximation �52� affects only the
coefficients that multiply the exponentials, i.e., the initial
conditions.

In the large-time limit � ,��→�, �−�� finite �and posi-
tive�, we can replace �H��� ,�� ,c1 ,c2� by 
H�c1���c1−c2�
+�H

s �c1 ,c2�, so that

	�N����N����
H = NH����− A1,1 − zA1,2 − zA1,2

	e−p��T+2�n���−��� − z2A2,2e−p��T+2�n���−���� ,

�67�
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FIG. 2. �Color online� Second moment of the fluctuations of the
number of particles �left panel� and of the total energy �right panel�
as a function of the number of collisions per particle �, for a system
with p=0.5 and initial number of particles N=105. The dashed lines
are the theoretical predictions.
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FIG. 3. �Color online� Correlation between the fluctuations of
the total energy and total number of particles �left panel�, and sec-
ond moment of the fluctuations of the y component of the total
momentum �right panel�, as a function of the number of collisions
per particle �, for a system with p=0.5 and initial number of par-
ticles N=105. The dashed lines are the theoretical predictions.
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	�Pi����Pj����
H = �ijNH���vH���vH�����a3i,3i
s +

1

2

ep�T��−���,

�68�

	�E����E����
H = �dm

4

2

NH���vH
2 ���vH

2 �����− A1,1

+ �z + 2�A1,2 + �− �z + 2�2A2,2

+ �z + 2�A1,2�e−p��T+2�n���−���� , �69�

	�N����E����
H = m
d

4
NH���vH

2 �����A1,1 − �z + 2�A1,2

+ �− z�z + 2�A2,2 + zA1,2�e−p��T+2�n���−���� .

�70�

In the � scale, it can be seen from Eqs. �20� and �21� that NH
and vH decay exponentially. For A ,B=N ,E , P, the normal-
ized correlation functions

CAB��,��� = 	�A����B����
/	�A�����B����
 �71�

become therefore time-translationally invariant, i.e., func-
tions of �−��, once the stationary regime for the ratios such
as 	�N2���
 /NH��� has been reached �see the previous sec-
tion�. We have checked numerically that this is indeed the
case, and we compare in Figs. 9 and 10 the evolution of
CNN��−���, CEE��−���, and CNE��−��� measured in DSMC
simulations �for p=1, averaged over 4000 trajectories� with
the theoretical predictions. The agreement is very good.
Figure 11 also shows the theoretical prediction for the decay
of the momentum correlation function CPP�� ,���
= 	�Pi����Pj����
 / 	�Pi�����Pj����
 for p=0.5. The character-
istic decay time of CPP is of the order of ��4. Because
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FIG. 5. �Color online� Same as in Fig. 4 but for a system with
p=0.8.
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The dashed lines show the large-� predictions of Eqs. �59� and �61�.
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FIG. 4. �Color online� DSMC results for the scaled second mo-
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the time to reach the stationary regime for 	�Pi
2���
 /

�NH���vH
2 ���� is ��4, as shown in Fig. 3, we would need to

reach ��8 in the numerical simulations in order to display
numerical results for CPP, which means that we would need
to consider simulations with an initial number of particles of
the order of N�0��107.

VII. CONCLUSIONS

In this paper, we have formulated a general theory for
fluctuations and correlations in a dilute probabilistic ballistic

annihilation system. The theory has been particularized to
the homogeneous decay state, taking advantage of its scaling
properties. For this state we have focused on the study of the
fluctuations of the total number of particles, total momen-
tum, and total energy, evaluating the two-time correlation
functions between these quantities in the hydrodynamic ap-
proximation. The fluctuations of the total number of par-
ticles, total momentum, and total energy, once conveniently
rescaled, converge to stationary values. The convergence is
exponential in the natural time scale � given by the number
of collisions, and the corresponding rates are simple combi-
nations of the cooling rates. The stationary values are ob-
tained as functionals of the distribution function and can be
computed in the first Sonine approximation. We have also
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FIG. 7. �Color online� Average steady values of the one-time
correlation of the energy and number of particle fluctuations as a
function of the probability of annihilation p. The dashed line shows
the large-� prediction of Eq. �62�.
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obtained theoretical expressions for the two-time correlations
of global observables. All our theoretical predictions have
been successfully compared with the results of molecular
dynamics and DSMC numerical simulations, providing
strong support for the theory developed here, including the
hydrodynamic description in terms of the lowest-order eigen-
functions and eigenvalues of the linearized Boltzmann colli-
sion operator.

As a side remark, we note that the correlation functions
contain two parts, one coming from the one-particle distribu-
tion function, and another one that comes from velocity cor-
relations. Nevertheless, it must be stressed that the existence
of these velocity correlations does not imply a violation of
the “molecular chaos” assumption that underlies the Boltz-
mann equation. This is because the latter refers only to the
precollisional part of the two-body distribution function �at
contact�.

The fact that the two-time correlation functions decay on
a time scale determined by the cooling rates reflects the in-
tuitive notion that their dynamic is essentially of macro-
scopic character, compatible with Onsager’s regression hy-
pothesis �see, e.g., �21��. To analyze this point in a deeper
way, we show in Appendix C that a description of the fluc-
tuations �N, �E, and �P in terms of linear Langevin equa-
tions can be obtained, using for the deterministic part the
evolution equations for a linear perturbation around the
HDS. The noise terms in the Langevin equations �Gaussian
and �-function correlated in time� can then be adjusted in
order to obtain the same amplitudes for the one-time corre-
lation functions as with our theory. In this respect, the results
derived in Appendix C may be envisioned as formulating a
fluctuation-dissipation theorem for the homogeneous decay
state under scrutiny in this paper. The amplitudes of the noise
terms are, however, complicated functions of moments of the
one-particle distribution functions, and are not clearly related
to macroscopic quantities such as the cooling rates.
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APPENDIX A: EXPRESSIONS FOR a�1,�2

s

In this appendix we compute the expressions for the co-
efficients a�1,�2

s . Applying the projector P12 to �40� yields,
under the assumption P12��ci�= P12��ci�P12,

���c1� + ��c2� − 2p�n��H
s�h��c1,c2�

= − �P12T�c1,c2�
H�c1�
H�c2� . �A1�

Using the definition �51� of the coefficients a�1,�2

s , we then
obtain the set of equations

�
�1

3

�
�2

3

a�1,�2

s ���1
+ ��2

− 2p�n���1
�c1���2

�c2�

= − P12�T�c1,c2�
H�c1�
H�c2� , �A2�

and it is straightforward to write

a�1,�2

s = −
	�̄�1

�c1��̄�2
�c2���T�c1,c2�
H�c1�
H�c2�


��1
+ ��2

− 2p�n
.

�A3�

Given the expression of the functions ��̄i�c��i=1
3 , and taking

into account the relations

p�n = −
�

2
� dc1� dc2T�c1,c2�
H�c1�
H�c2� , �A4�

p�T = −
�

2
� dc1� dc2�2c1

2

d
− 1
T�c1,c2�
H�c1�
H�c2� ,

�A5�

we obtain

a1,1
s = − �1 −

z

2�1 + z�

2

+ �1 +
2

z

 z

1 + z
�1 −

z

2�1 + z�

+

b�p�
2p�n

z2

�1 + z�2 , �A6�

a1,2
s =

1

p�T + 4p�n
�� z

2�1 + z�
− 1
 p�2�n + �T�

�1 + z�

+ p��n + �T�
z

2�1 + z�2 − b�p�
z

�1 + z�2� , �A7�

a2,2
s =

1

2p��T + 3�n��−
p�3�n + 2�T�

2�1 + z�2 +
b�p�

�1 + z�2
 , �A8�

0

0.2

0.4

0.6

0.8

1

CPP

0 2 4 6 8
τ−τ’

FIG. 11. Theoretical prediction for the decay of the momentum
correlation function CPP�� ,���, defined in the main text, as a func-
tion of �−�� for a system with p=0.5.

DYNAMICS OF ANNIHILATION. II. FLUCTUATIONS OF… PHYSICAL REVIEW E 77, 051128 �2008�

051128-11



a3i,3j
s = �ij

c�p�
2��T − �n�

, �A9�

where

b�p� = �� dc1� dc2
c1

2c2
2

d2 T�c1,c2�
H�c1�
H�c2� ,

�A10�

c�p� = �� dc1� dc2
H�c1�
H�c2�� d�̂��c12 · �̂�

	�c12 · �̂�c1xc2x. �A11�

These two functions have been evaluated in first Sonine
order, with the result

b�p� = −
16�− 1 + 4d�d + 1��p + a2�256 − 255p + 4d�− 64 + �71 + 7d�p��

128�2d2��d/2�

�d−1�/2� , �A12�

c�p� =
�− 16 + 5a2�
32�2d��d/2�


�d−1�/2� . �A13�

APPENDIX B: EXPRESSIONS FOR a�1,�2
(0)

In this appendix we evaluate the coefficient a�1,�2
�0� for

the specific case in which we have

	�N2�0�
 = 0, 	�Pi�0��Pj�0�
 = 0, �B1�

	�E2�0�
 = 0, 	�N�0��E�0�
 = 0. �B2�

Taking these relations into account, it is straightforward to
obtain

� dc1� dc2�H�0,c1,c2� = − 1, �B3�

� dc1� dc2ciic2j�H�0,c1,c2� = −
1

2
�ij , �B4�

� dc1� dc2c2
2�H�0,c1,c2� = −

d

2
, �B5�

� dc1� dc2c1
2c2

2�H�0,c1,c2� = −
d�d + 2�

4
�1 + a2� .

�B6�

With these expressions and the definition of �̄i, we get

a1,1�0� =
1

�1 + z�2� z

2
�z + 2� −

1

4
�z + 2�2 −

d + 2

4d
z2�1 + a2�
 ,

�B7�

a1,2�0� =
1

2�1 + z�2�− � z

2
+ 2
 +

d + 2

2d
z�1 + a2�� , �B8�

a2,2�0� = −
1

�1 + z�2�3

4
+

d + 2

4d
�1 + a2�
 , �B9�

a3i,3i�0� = −
1

2
. �B10�

APPENDIX C: LANGEVIN EQUATIONS
FOR THE GLOBAL MAGNITUDES

In this appendix, we will show that it is possible to find a
Langevin description for the fluctuations of the global mag-
nitudes of the system. The idea is to assume that the global
magnitudes obey some equations that can be decomposed
into a deterministic part, which is identified with the macro-
scopic equations for a linear perturbation of the HDS, plus a
Gaussian white noise. Because of formulas �59�–�62� let us
study the equations for the magnitudes

�Ñ��� =
�N���
NH

1/2���
, �P̃i��� =

�Pi���
NH

1/2���vH���
,

�Ẽ��� =
4�E���

dmNH
1/2���vH

2 ���
, �C1�

in order to deal with processes with time-independent vari-
ances.

Let us start with the easiest one, the equation for �P̃i���.
We can define the function

�i,k=0��� =
1

nH�t�vH�t�� dr� dv vi�f�r,v,t� , �C2�

where �f�r ,v , t�� f�r ,v , t�− fH�v , t�, with fH�v , t� the distri-
bution function in the HDS. Then, if the generic distribution
function f�r ,v , t� is close enough to the HDS one, the linear
equation for �i,k=0��� is �see the preceding paper�
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� �

��
− p�T
�i,k=0��� = 0. �C3�

Then it is straightforward to see that the equation for the

macroscopic deviation �P̃M would be

� �

��
+ p��n − �T�
�P̃M��� = 0, �C4�

where the superscript M denotes macroscopic. Now, let us

suppose that the equation for the fluctuating �P̃ is of the
form

� �

��
+ p��n − �T�
�P̃i��� = Rp��� , �C5�

with Rp��� a Gaussian white noise with the following prop-
erties:

	Rp���
H = 0, 	Rp���Rp����
H = �p��� − ��� . �C6�

That is, we consider that the equation describing the dynam-
ics of the fluctuations can be obtained from the macroscopic
equation describing the evolution of the system. Under these

hypotheses we can calculate 	�P̃����P̃����
. The solution of
Eq. �C5� in the long-time limit is

�P̃i��� = �
0

�

d��e−p��n−�T���−���Rp���� , �C7�

and the autocorrelation function is, for ����,

	�P̃����P̃����
 =
�pe−p��n−�T���−���

2p��n − �T�
�1 − e−2p��n−�T���� .

�C8�

We are interested in the limit ��→� , �→� , ��−�� finite.
In this limit we obtain

	�P̃����P̃����
H =
�p

2p��n − �T�
e−p��n−�T���−���. �C9�

Now one can relate this result to the one obtained previously,
Eq. �68�, which can be expressed in our variables as

	�P̃����P̃����
H = �1

2
+ a3i,3i

s 
e−p��n−�T���−���. �C10�

Comparing Eqs. �C9� and �C10�, it is seen that if

�p = 2p��n − �T��1

2
+ a3i,3i

s 
 , �C11�

the Langevin equation �C5� is in agreement with the results
obtained in the previous section.

Now we will sketch the derivation of the Langevin equa-
tions for the other fluctuating quantities. First of all, we are
going to start from the macroscopic equation for �0 and �0
defined as

�0 � �k=0��� =
1

nH�t�� dr� dv �f�r,v,t� , �C12�

�0 � �k=0��� =
2

dnH�t�TH�t�� dr� dv
1

2
mv2�f�r,v,t� .

�C13�

These equations are

�

��
�0��� + p�n��0��� + �0���� = 0, �C14�

�

��
�0��� + p��n + �T���0��� + �0���� = 0, �C15�

from which we can write the equations for �ÑM

=V−1/2nH
1/2�0 and �ẼM =V−1/2nH

1/2�0:

�

��
�ÑM = − 2p�n�ÑM − p�n�ẼM , �C16�

�

��
�ẼM = − p��n + �T��ÑM − p�2�n + �T��ẼM . �C17�

As we obtain a linear system of coupled equations, it is con-
venient to introduce some new variables to diagonalize the
problem:

X1
M =

�n + �T

�n
�ÑM − �ẼM , �C18�

X2
M = �ÑM + �ẼM . �C19�

We obtain

�

��
X1

M = − p�nX1
M , �C20�

�

��
X2

M = − p�3�n + �T�X2
M . �C21�

Let us suppose now that the equations for Xi��� have the
form of the macroscopic equations �C20� and �C21� plus a
Gaussian random noise whose variance has to be computed
to reproduce the results that we have obtained for the corre-
lation function of the fluctuations of N and E. The equations
for the fluctuating variables X1 and X2 are thus

� �

��
+ p�n
X1 = R1��� , �C22�

� �

��
+ p�3�n + �T�
X2 = R2��� . �C23�

Then, if we suppose that the noise terms have zero mean and
their correlation function is �-function correlated in time,
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	Ri���
H = 0, 	Ri����Rj���
H = �ij���� − �� , �C24�

we can obtain the values of the amplitudes of the noise term
�ij in the same way we have done with the momentum, that
is, by comparing with the results we obtained in the previous
section. We obtain

�11 = − 8p�n
�1 + z�2

z2 A11, �C25�

�22 = − 8p�3�n + �T��1 + z�2A22, �C26�

�12 = − 4p�4�n + �T�
�1 + z�2

z
A12. �C27�

These calculations show that it is possible to describe the
dynamics of fluctuations in the HDS in terms of some
Langevin equations with Gaussian white noise. Due to the
Gaussian nature of the noise and given that the equations are
linear, the probability distribution function for those pro-
cesses will also be Gaussian, in agreement with our simula-
tions. It is worth pointing out that, although the amplitudes
of the noises are known, they are not related in a simple way
to the cooling rates �n and �T that appear in the deterministic
part of the equations.
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