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In this paper we study the morphology of drops formed on partially wetting sub-
strates, whose footprint is not circular. These drops are consequence of the breakup
processes occurring in thin films when anisotropic contact line motions take place.
The anisotropy is basically due to the hysteresis of the contact angle since there is
a wetting process in some parts of the contact line, while a dewetting occurs in
other parts. Here, we obtain a characteristic drop shape from the rupture of a long
liquid filament sitting on a solid substrate. We analyze its shape and contact angles
by means of goniometric and refractive techniques. We also find a non-trivial steady
state solution for the drop shape within the long wave approximation (lubrication
theory), and we compare most of its features with experimental data. This solution
is presented both in Cartesian and polar coordinates, whose constants must be
determined by a certain group of measured parameters. Besides, we obtain the dy-
namics of the drop generation from numerical simulations of the full Navier–Stokes
equation, where we emulate the hysteretic effects with an appropriate spatial distri-
bution of the static contact angle over the substrate. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4944851]

I. INTRODUCTION

Wetting of solids, such as the spreading of a drop on a surface, is a basic and ubiquitous
phenomenon in a wide variety of natural and technological processes. As a consequence, a large
amount of intensive experimental and theoretical research has been published over the past de-
cades.1–3 A comprehensive review on the subject of drop shapes and their instability can be found in
Ref. 4, where a sustained growth of publications is also reported.

In general, it is assumed that the sessile drop on a horizontal substrate has a circular footprint.5

However, this is not usually the case, as can be easily seen by just spreading some water over the
table. The reasons for having non-circular shapes are primarily due to non-uniform wettability of the
substrate or/and contact angle hysteresis.6–8 The former effect is usually attributed to variations of
physico-chemical properties of the surface coating, such as its energy, which can yield to different
contact angles. On the other hand, the latter stands for the range of static contact angles that a circular
sessile drop can attain on a substrate with uniform wettability. This fact can alternatively be under-
stood from a thermodynamical point of view within the framework of the Wenzel and Cassie-Baxter
descriptions.9 In this respect, another feature of the wettability problem currently under study is the
pinning or not of the contact line in relation with oscillations of the free surface.10 Moreover, hysteretic
effects are observed not only at the macroscopic scale but also at the micro and nanoscales.11,12

Up to our knowledge, there are few detailed measurements of drops with non-circular foot-
prints (see, e.g., Refs. 13–15). Non-axisymmetric drops can also be obtained from other mecha-
nisms, such as the coalescence of two sessile drops.16 In particular, we are concerned with aniso-
tropic drops generated from the rupture of long liquid filaments placed on a horizontal substrate,
in contrast with most of the literature where the anisotropy is due to the presence of gravity on an
inclined plane. Since the formation of the drops from ruptures involves both wetting and dewetting
displacements of the contact line, their anisotropic features are more related to the hysteresis of
the contact angle. In general, only the studies involving circular drops have somehow considered
hysteretic effects, but those concerned with non-circular ones have neglected them.

1070-6631/2016/28(4)/042104/18/$30.00 28, 042104-1 ©2016 AIP Publishing LLC
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It must be pointed out that a thorough comparison of measured details of these anisotropic
drops, such as contact angles along the whole drop periphery or thickness profiles, with theoret-
ical or numerical predictions is still lacking in the literature. Moreover, most of the modeling has
been done by using numerical simulations, while analytical solutions are scare, even within the
framework of the lubrication theory. Based on this approximation, we derive a solution here for
the equilibrium shapes which predicts, among other of its properties, the contact angles around
the entire perimeter of the drop as a function of a few relatively easy to measure parameters. This
solution is not only contrasted with experimental data but also with numerical simulations of the full
Navier–Stokes (N-S) equation.

In our simulations, the effect of hysteresis is mimicked by imposing different contact angles
at the substrate, as if its wettability were non-uniform. Thus, we impose a smaller (receding) and
larger (advancing) contact angle at regions where dewetting and wetting are expected, respectively,
similarly to what was done in Ref. 17. Naturally, more sophisticated numerical schemes can also be
used to account for the hysteresis, for instance, by assuming dependences between the contact line
velocity and the dynamical contact angle.18,19 In general, both kinds of treatments are usually mixed
in the literature, and simply named as contact angle hysteresis.20–22 Interestingly, the hysteretic
effects are not only observed in the contact line dynamics but also on the resulting features of
the drop at rest. Actually, different angles can be observed along the same quiescent contact line
even if the surface substrate is smooth. Bearing in mind this fact, we use our simulation scheme
just to compare the final shape of the drop formed from a single filament that dewets longitudi-
nally, without ruptures, with the analytical equilibrium solutions, leaving the dynamics of the drop
formation for future work.

The paper is organized as follows. In Section II we present the experimental part by charac-
terizing the substrate and the liquid to be used, as well as the rupture mechanism of the filament
and the resulting droplets. In Section III we describe the formalism of the long wave approximation
which gives the framework for the static solution to be obtained. As a consequence, the description
is first performed under the assumption of small contact angles. Thus, Sections IV and V are
devoted to the development of analytical solutions for non-axisymmetric sessile drops, i.e., with
non-circular footprints, as well for their comparison with experimental data. Solutions without the
restriction of small contact angles are obtained numerically in Section VI, where the Navier–Stokes
equations are solved to describe the dewetting dynamics of a filament of finite length, which ends up
into a single droplet. Finally, in Section VI we compare the experimental, theoretical, and numerical
results for the footprint of the drop, contact angles, and thickness profiles. In Section VII, we
summarize the results and present the concluding remarks.

II. DROPS FROM A FILAMENT BREAKUP: EXPERIMENTS

A. Substrate and liquid

In order to perform the experiments, we use a substrate that is partially wetted by our work-
ing fluid, namely, a silicon oil (polydimethylsiloxane, PDMS). The substrate is a microscope
slide (glass) which is coated with a fluorinated solution (EGC-1700 of 3M) by dip coating under
controlled speed using a Chemat Dip Coater. This process ensures that the PDMS partially wets the
substrate, since the coating lowers the surface energy of the glass. The surface tension, γ, and den-
sity, ρ, of PDMS are measured with a Krüss K11 tensiometer, while its viscosity, ν, is determined
with a Haake VT550 rotating viscometer. The values of these parameters are: γ = 19.8 dyn/cm,
ρ = 0.96 g/cm3, and ν = 20 St at temperature T = 20 ◦C.

The wettability of the PDMS on the coated glass is characterized first by measuring the static
contact angle, θe, of a single sessile circular drop at rest on a horizontal substrate. Then, we are
able to quantify the hysteresis cycle of θe, as shown in Fig. 1, by using a Rame–Hart Model 250
goniometer. In order to do this, we measure the contact angle when the static state is reached
either from a previously advancing or receding contact line. These scenarios are obtained by
injecting or withdrawing liquid into an initially circular sessile drop in a controlled manner through
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FIG. 1. Hysteresis cycle of the static contact angle, θe. The drop initially spreads on a dry surface (black filled squares)
with an increasing volume, and then recedes due to liquid withdrawal (red filled circles). Finally, due to liquid injection, it
advances on a prewetted surface (blue hollow circles). The cycle of advancing on a wet substrate and receding is then repeated
again. The horizontal lines show the maximum and minimum contact angles θadv and θrcd, respectively. The inset shows the
drop profile together with the needle for fluid injection/withdrawal.

a vertical needle that touches the drop at its apex (see inset in Fig. 1). Our system allows to vary the
drop volume, V , by incremental steps ∆V = 1 µl.

The goniometer allows to measure θe by analyzing a side view of the drop with a software
based on an axisymmetric drop shape technique called ADSA23 which fits the front region of the
thickness profile by an arc of a circle and allows to have an independent value of the contact angle
at each side of the side view of the drop (see inset in Fig. 1). These two values serve as a control
of the drop symmetry since the difference between them is less than 1.5% which is consistent with
a circular footprint. We use the average of both values to determine θe. This method allows to
construct the complete hysteresis cycle shown in Fig. 1. Note that the first branch of the cycle (black
solid squares in Fig. 1) is not coincident with the last one (blue hollow circles) for the same volume
interval. This is because the initial spreading stage occurs over a dry surface, while the last one
(after the dewetting stage) occurs over a surface that has already been pre-wetted by the oil (see,
e.g., Ref. 24). It is know that the receding stage does not completely remove all the liquid, but leaves
behind a nanometric thin film.1,25 Though the difference between θe in both branches is small, we
always obtain larger angles for the spreading on a dry surface. In summary, we can characterize the
wettability of circular drops by the maximum (minimum) value of the advancing (receding) contact
angles of the hysteresis cycle, namely, θadv = 53.7◦ (θrcd = 36.5◦).

B. Liquid filament and drops

The drops that we analyze in this section are the result of the breakup of a liquid filament
placed on the substrate as explained in detail in previous works.15,26 We start with a vertical jet of
PDMS flowing out from a small nozzle at the bottom of a vessel filled with the silicon oil. The
filament is captured from the jet on the substrate by performing suitable rotations of its frame before
reaching the final horizontal position. All these movements take about 1–2 s, which is a very short
time interval compared to the time scale of the experiment. This procedure yields a fluid filament
of uniform width, w, with parallel and straight contact lines, so that the initial configuration has a
constant cross-sectional area along its axis. We calibrate the system by relating the fluid height in
the vessel with the jet diameter a given nozzle. Thus, both the jet diameter and the corresponding
filament widths (for a contact angle equal to θadv) could be varied from 0.3 to 1.3 mm and from 0.1
to 1.0 mm, respectively.

A typical breakup process of the filament starts at its extremes, as shown in Fig. 2 for one
of them. Initially, the ends are rounded and recede. Then, the receding flow forms a bulge, and a
neck develops at a certain distance from it. Finally, this neck breaks up, and the remaining bulge
completes its dewetting process by evolving into a sessile drop with non-circular footprint. The
times and positions of the filament extreme are also indicated in the figure. This dewetting and
breakup mechanism repeats itself starting from the new end of the filament, and at the end, it gives
place to a series of similar drops. Here, we are interested mainly on the shape of a typical drop
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FIG. 2. Time evolution of one end of the liquid filament of width w = 0.74 mm. The initially rounded extreme recedes and
forms a bulge. Then, a neck develops at a certain distance from the bulge, which finally breaks up.

that results from this evolution, and not in the description of the instability itself, which has been
thoroughly studied elsewhere.15,27–29

In Fig. 3(a) we show the top view of the first drop formed by this filament together with the digital
curve (red line) obtained by image analysis. The maximum and minimum diameters of the footprint
arewx = 1.63 andwy = 1.09 (in units of ac). A comparison of the footprints for all 7 drops in which the
filament broke up is shown in Fig. 3(b). Even if the drop volumes are a bit different, all the drops share
the same features of their footprints. The side view of drop #1 is shown in Fig. 4(a), and it corresponds
to the longitudinal direction (i.e., along the axis of the original filament, x-axis). Unfortunately, the
transverse view (along y-axis) cannot be obtained since it is blocked by similar drops that sit along
the same line. The maximum thickness is of drop #1 is hmax = 0.26 (in units of ac).

Since the drop is clearly non-axisymmetric, its volume cannot be determined by the ADSA
method. Instead, the average volume, V̄ , of the drops resulting from a given filament can be esti-
mated from the number of drops, the weight of the substrate with the drops, and the liquid volume
of the jet that formed the original filament. In our experiment, we have V̄ = 0.25 in units of a3

c.
This parameter is not needed for the following analytical modeling but is necessary to perform the
simulations in Section VI.

Considering that the standard technique of the goniometer can measure contact angles only on
vertical planes along the axes of symmetry, for a drop with non-circular footprint we must resort
to a different technique. Here, we use one that is based on the refraction of light by the contact
line region.26 Thus, we impinge the drop from above with an He-Ne laser beam, normally to the
substrate, as shown in Fig. 5(a). This beam, which is wider than the footprint, is refracted by the
drop free surface and is focused at a short distance, f , below the glass substrate. It finally produces
an illuminated area on a screen placed at a distance, D = (64 ± 1) mm, below the substrate. For
a footprint of arbitrary shape (non-circular), the maximum light deflection angle, β(ϕ), varies at
different azimuthal directions, ϕ, with 0 ≤ ϕ ≤ 2π. Thus, an angular pattern is illuminated on the
screen, such that its center is at the normal to the substrate and its diameter is d(ϕ).

FIG. 3. (a) Top view of drop #1. The red line is the digitally obtained curve for the footprint. The dimensional widths of
the drop in x and y directions are 2.36 mm and 1.59 mm, and the estimated drop volume is V̄ = 7.75 µl. (b) Digitalized
footprints of all 7 drops along the same filament.
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FIG. 4. (a) Side view of drop #1. The red lines are the digitally obtained curve for the longitudinal thickness profile. The
maximum thickness at the drop center is 0.38 mm, and the estimated drop volume is V̄ = 7.75 µl. (b) Digitalized profiles of
all 7 drops along the same filament.

In order to obtain θe from the value of β at a given ϕ, we first analyze the path of the light beam
refracted by the drop and the substrate as follows (see Fig. 5(b)):

sin θe = n sin α, n sin α′ = n0 sin ε = sin β, (1)

where n (=1.40 ± 0.01) and n0 are the refraction indexes of PDMS and glass, respectively. Since
θe = α + α′, we can eliminate α from the first relation in Eq. (1) and obtain

tan θe =
−n sin α′

1 − n cos α′
. (2)

By using the second relation in Eq. (1), we find

tan θe =
sin β

n2 − sin2 β − 1
. (3)

Finally, the total deflection of the beam is (see Fig. 5(a)),

d
2
= H tan α′ + e tan ε + D tan β, (4)

where H (≈0.1 mm) is a typical height of the drop and e (=1 mm) is the glass thickness. If the
screen is sufficiently far from the substrate, we can neglect the first two terms in Eq. (4) to obtain

tan β ≈ d
2D

. (5)

Thus, Eqs. (3) and (5) allow us to obtain the contact angle of the drop around all of its periphery, i.e.,
θe(ϕ). Note that this method is intended for non-axisymmetric drops. However, some requirements
must be fulfilled: (1) it is necessary to have a single point, P0 = (x0, y0), on the free surface with

FIG. 5. (a) Light rays diagram of the refractive method. (b) Close-up of the circled region in (a) showing in detail the
trajectory of the light rays.
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FIG. 6. (a) Refraction pattern of drop #1 as seen on the screen. The green line shows the digital capture of the image contour,
and the central dark circle is a coin with diameter 23.3 mm. (b) Digital captures of all 7 drops.

zero slope, since its position determines the center of the polar description, (r, ϕ), at the screen.
(2) The free surface slope must grow monotonously from zero at P0 to a maximum value at the
contact line in all directions. (3) The footprint shape must be such that all lines on the screen along
r̂ intersect the contact line at a single point. Thus, it is possible to relate the contact angle at a point
of the contact line with the maximum radius of the illuminated area and its azimuthal position at the
screen. In our case, it is safe to use this method since these conditions are satisfied.

A typical illumination pattern is shown in Fig. 6(a), where the central region is blocked with a
light stopper to avoid saturation of the camera in order to obtain a good contrast. The diameter of
this stopper, which is actually a coin with diameter 23.3 mm, also works as a reference of length
scale. Figure 6(b) shows analogous digital figures obtained from the light patterns of all 7 drops
resulting from the filament.

The corresponding angular distribution of contact angles along the drop periphery is shown
in Fig. 7(a) for all 7 drops. Interestingly, the contact angles given by Eq. (3) in the longitudinal
and transverse directions (ϕ = 0 and π/2 in Fig. 5(b), i.e., x and y directions) are very close to
maximum (minimum) value of the advancing (receding) contact angles measured in the hysteresis
cycle, namely, θadv (θrcd) in Fig. 1. This is because the drop adopts its final shape by wetting in the
transverse direction and dewetting in the longitudinal one. Therefore, these two angles characterize
the resulting geometry of the footprint. Note that all drops, even with a bit different volumes, share
similar characteristics in this angular distribution. The most important difference is on the receding

FIG. 7. (a) Contact angle distribution around the footprint periphery for all 7 drops in the same filament as obtained from
the angular patterns in Fig. 6(b). (b) Comparison between the measurements of the drop contact angle along x-axis for all 7
drops resulting from the same filament.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  190.50.90.120

On: Mon, 04 Apr 2016 15:38:11



042104-7 Ravazzoli, González, and Diez Phys. Fluids 28, 042104 (2016)

contact angle along the filament axis, where the curves differ within a range of about 4◦, and which
affects the azimuthal width of the advancing plateau region.

In order to assert the accuracy of the refraction technique, we aim to compare the values of
the contact angle as measured with the goniometer and the present method. Since the former can
be used only for a single meridional plane, we choose the contact angle, θx, along the x-axis
as a benchmark for the comparison. It is known that the goniometer error is about ±1◦, while
for the refraction method we find that the accuracy of θx is around 1.5%, since both D and d
are determined within 1%. The comparison is shown in Fig. 7(b) for all 7 drops of the filament.
Clearly, both methods have similar accuracy, although the refraction technique can be used also for
non-axisymmetric drops.

III. FORMALISM FOR THE NON-CIRCULAR DROP

We are now concerned with static solutions of the dimensionless N-S equation,

La

∂v⃗

∂t
+ (⃗v · ∇⃗) · v⃗


= −∇⃗p + ∇2⃗v − z⃗, (6)

where the last term stands for the gravity force. Here, the scales for the position x⃗ = (x, y, z), time
t, velocity v⃗ , and pressure p are the capillary length ac =


γ/(ρ g), µac/γ, γ/µ, and γ/ac, respec-

tively, where g is the gravity. Therefore, the Laplace number is La = ργac/µ
2. In our experiments

we have ac = 1.45 mm, and La = 0.007. The x and y-axes are assigned along and across the
original filament, respectively.

For a sessile drop at rest, we have v⃗ = 0, so that the balance between gravity and pressure
gradient is given by

0 = −z⃗ − ∇⃗p, (7)

plus the boundary condition of capillary pressure jump at the interface

p(x, y, z = h) − p0 = pcap(x, y) = −∇2h

(1 + |∇h|2)3/2 , (8)

where h(x, y) is the drop thickness function, and p0 is the ambient pressure outside the drop. If
follows that the equilibrium condition along z-axis, namely, ∂p/∂z = −1, leads to p(x, y, z) = p0 −
z + h(x, y) + pcap(x, y). Therefore, the analogous conditions along both x and y-axes, ∂p/∂x =
∂p/∂ y = 0, require

pcap(x, y) + h(x, y) = C, (9)

where C is an unknown constant.
When the drop is axisymmetric, i.e., with circular footprint, the static problem posed by

Eqs. (8) and (9) is already solved in the literature (see, e.g., Ref. 5). However, no similar attempts
have been done for the non-axisymmetric problem. Here, we retain the asymmetric features of
the drop, but somewhat simplify the equations by assuming the validity of the lubrication theory.
Within this approach, the long wave approximation requires small slopes at the free surface, so that
|∇h| ≪ 1, and Eq. (9) becomes

−∇2h + h = C, (10)

which is the inhomogeneous Helmholtz equation. The boundary conditions are h = 0 and given
contact angle, ∂h/∂n̂, along the contact line. A solution of this equation can be written in the form
h = C + h1, where h1 is the solution of the homogeneous equation,

∇2h1 − h1 = 0. (11)

Our approach in this paper is to compare particular solutions of Eq. (10) with experimental data.
These solutions have been selected as having a special symmetry and requiring the smallest number of
parameters from the experiments. This comparison is performed by verifying that the predicted shape
of the contact line, thickness profiles, and contact angles is in agreement with the measurements.
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IV. STATIC SOLUTION IN CARTESIAN COORDINATES

Since the experimental data show that the characteristic contact angles, θadv and θrcd, corre-
spond to perpendicular axes, we consider the solution as having two axes of symmetry, namely, x
and y . Therefore, expressing the solution in Cartesian coordinates and assuming variable separa-
tion, we write h1 = X(x)Y (y). Then, Eq. (11) leads to

X ′′

X
+

Y ′′

Y
− 1 = 0. (12)

Among all possible solutions of this equation, we restrict ourselves to even functions in both x and
y , due to the symmetric character of the drop with respect to x and y reflections. Thus, we find

h1 = A cosh ax cosh by, (13)

where A is a constant, and a,b are determined by the constraint

a2 + b2 = 1. (14)

Note that, in general, the solution is an integral in terms of a with A(a). However, for simplicity, we
assume that a single value of a is needed to reasonably describe the solution. This is in consonance
with our aim to determine the detailed properties of the experiments from solutions that comply
with only a small subset of the boundary conditions. This allows us to test the robustness of the
solutions obtained from this model.

In general, a boundary condition is h(xc, yc) = 0 at the points (xc, yc) of the contour of the
footprint (contact line), which means that

h1(xc, yc) = A cosh axc cosh byc = −C, (15)

which defines the shape of the footprint,

yc =
1

√
1 − a2

arg cosh
(

−C
A cosh axc

)
(16)

for given values of the constants A, a, and C.
Then, the widths (or diameters) of the drop along the x and y-axes, namely, wx and wy, can be

obtained for yc = 0 and xc = 0, respectively. Thus, the solution given by Eq. (13) yields

A cosh bwy = A cosh awx = −C, (17)

which implies

b
a
=

wx

wy
. (18)

Since the contact angles at the axes of symmetry of the drop are given by

θx ≈ −
∂h
∂x

�����y=0
= −aA sinh awx, (19)

θy ≈ −
∂h
∂ y

�����x=0
= −bA sinh bwy, (20)

we obtain the relationship

θx
θy
=

wy

wx
. (21)

Although this equation is obtained within the long wave approximation where small slopes
are assumed, we test its range of validity by comparing it with experimental data corresponding to
relatively large angles. Figure 8 shows this comparison, where the ratios for drops belongs to two
filaments, A and B, of the same length and width. Even after taking into account the dispersion
of the data, one can conclude that they basically follow the linear trend with slope equal to one as
predicted by Eq. (21).
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FIG. 8. Ratios between contact angles and diameters of drops from two filaments, A and B, of the same length and width.
The straight line corresponds to Eq. (21), and the arrow points the datum corresponding to the drop #1.

Note that the maximum thickness of the drop, hmax, occurs at (x, y) = (0,0), i.e., the center of
the drop. At this point, the following relation holds:

hmax = C + A. (22)

One special feature of this Cartesian solution is that it is determined by assigning the values of
three parameters. For example, one could choose the group:wx,wy, and hmax. For this case, we show in
Fig. 9 the comparison between the theoretical results and the experiment for the shape of the footprint,
the longitudinal thickness profile, and the contact angle distribution around the drop periphery. The
theoretical solution is obtained by using Eqs. (14) and (18) to find a and b, and Eq. (17) to obtain
the ratio C/A. Finally, by introducing the result into Eq. (22), we have C for given hmax. Note that,
aside from the thickness at the drop center, hmax, this solution is determined by using information
only from two points of the contact line, which are the measured values of the widths at the symmetry
axes. Interestingly, Figs. 9(a) and 9(b) show that the footprint as well as the thickness profile present
only very small departures from the experimental data. However, the differences in the azimuthal
distribution of contact angles are important at the maximums and we find a much smoother transition
regions between the maximum and minimum contact angles (see Fig. 9(c)), likely because the three
parameters used in this solution do not contain sufficient angular information.

On the other hand, another example could be given by using θx and θy instead of wx and
wy as input data (aside from hmax). Now, the results look a bit different due to the inclusion of
angular information (see Fig. 10). In this case, we obtain a better comparison for the contact angle

FIG. 9. Comparison between the experimental data (red points) and the Cartesian solution (green dashed lines) using wx,
wy, and hmax as input data for: (a) drop footprint, (b) longitudinal thickness profile along the filament (x-axis), and (c) contact
angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and θadv shown in Fig. 1.
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FIG. 10. Comparison between the experimental data (red points) and the Cartesian solution (green dashed lines) using θx,
θy, and hmax as input data for: (a) drop footprint, (b) longitudinal thickness profile along the filament (x-axis), and (c) contact
angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and θadv shown in Fig. 1.

distribution, Fig. 10(c), along with some differences in the shape of the footprint, Fig. 10(a), but
no visible departures at the thickness profile, Fig. 10(b). Naturally, other combinations of three
parameters could be used, but the above cases are enough to show the sensitivity of the results
with respect to the choice. Note, in passing, that the ratio wy/wx for this drop is in good agreement
with Eq. (21) (see arrow in Fig. 8). In summary, in spite of this small number of parameters, the
predictions are remarkably good for the shape and thickness, while the agreement for the contact
angle distribution is less satisfactory. The fact that this Cartesian solution fails to fully describe the
azimuthal distribution of the contact angle (see Fig. 9(c)) implies that more information is needed
to describe the static free surface. Note that this Cartesian model is not completely general since it
is limited to only two symmetries, namely, with respect to the x and y-axes. Moreover, it does not
fully take into account any harmonic component of the problem, other than angular periodicities
multiples of π/2. In order to improve this solution, we should resort to an integral, which requires a
not straightforward procedure.

V. STATIC SOLUTION IN POLAR COORDINATES

Instead of increasing the complexity of the Cartesian model, we show here that polar coordi-
nates are more convenient to deal with other details of the problem. They allow us to apply the basic
angular symmetries of the drop in a very convenient way and reduce the problem to a Fourier series
instead of an implicit integral equation.

If the problem is expressed in the radial and angular variables (ρ,ϕ), a separation of the form

h1 = R(ρ)Φ(ϕ) (23)

is possible, leading to two uncoupled ordinary differential equations for R and ϕ from Eq. (11).
Note that since we must assume angular periodicity in 0 ≤ ϕ ≤ 2π, the solution in ϕ satisfies a
Sturm-Liouville problem and a Fourier series is obtained. The equation for h1 can be written as

ρ

R
d

dρ

(
ρ

dR
dρ

)
+

1
ϕ

d2Φ

dϕ2 + ρ2 = 0, (24)

where the ϕ-dependence is of the form

Φ = Am cos mϕ + Bm sin mϕ, (25)

with m a positive integer. Thus, it turns out that R is given by the Bessel function of order m
(Neumann functions must be discarded since they diverge at the center of the drop). Therefore, the
general solution in polar coordinates can be expressed as

h(ρ,ϕ) = C +
∞

m=0

(Am cos mϕ + Bm sin mϕ)Jm(ρ). (26)
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In order to have a symmetric solution with respect to reflections along x and y-axes, we must
have both Bm = 0 for all m and Am = 0 for odd m. Here, we further assume that the shape of the
drop can be reasonably estimated by the first five terms of Eq. (26), so that

h(ρ,ϕ) ≈ C + A0J0(ρ) + A2J2(ρ) cos 2ϕ + A4J4(ρ) cos 4ϕ + A6J6(ρ) cos 6ϕ, (27)

where Jm is the Bessel function of the first kind of order m, and the five unknown constants,
(C, A0, A2, A4, A6), must be determined from the experimental data. In fact, by measuring the values
of (wx, wy,hmax, θx, θy), we can form the following system of independent equations:

h
(
wx

2
,0

)
= 0, h

(wy

2
,
π

2

)
= 0, h(0,0) = hmax,

∂h
∂x

(
wx

2
,0

)
= θx,

∂h
∂ y

(wy

2
,
π

2

)
= θy, (28)

which can be solved analytically.
The comparison between this solution and experiments is shown in Fig. 11. Similarly to the

Cartesian solution, Figs. 11(a) and 11(b) show that the footprint as well as the thickness profile
given by the polar solution present very little difference with the experimental data. However, unlike
the Cartesian solution, the polar one clearly gives a much better approximation to the experimental
contact angles. In fact, Fig. 11(c) shows a very good agreement not only by yielding accurate
values of the advancing and receding contact angles but also in the regions nearby these angles.
Nevertheless, even if the transition zones are steeper than the Cartesian solution, they are not still
steep enough when compared to the experimental data. We believe that this is because the detailed
information about these regions require more than four terms of Eq. (27). In other terms, the small
amount of experimental data from Eq. (28) is not enough to determine the steep change in the
contact angle.

A. Selection of minimum number of parameters

Since it is clear now that a truncated polar solution is appropriate to fit the experimental data
except for some details, we analyze how to select a minimal and optimal set of measured parameters
necessary to have a good description of the drop. This can be useful when the experimental setup
does not allow a detailed measurement of five of them given in Eq. (28). With this goal, we consider
the following different combinations of four parameters:

Case 1: Measure (wx, wy,hmax, θx) and take θy equal to the advancing contact angle obtained in
the hysteresis cycle (Fig. 1) over dry substrate, i.e., θy = θadv = 53.7◦ instead of the measured value
of θy for the drop itself. The comparison with the experimental data is shown in Fig. 12. Clearly, the
results for the footprint, the thickness profile, and the azimuthal distribution of θe remain with an
accuracy very similar to that in Fig. 11 for five measured parameters. The only minor difference is
in the largest contact angle, which is due to the fact that θy taken from the hysteresis cycle is 0.15◦

larger than the one measured in this particular case.

FIG. 11. Comparison between the experimental data (red points) and the polar solution (black dashed-dotted lines) deter-
mined with five parameters for: (a) drop footprint, (b) longitudinal thickness profile along the filament (x-axis), and (c)
contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and θadv shown in
Fig. 1.
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FIG. 12. Comparison between the experimental data (red points) and the polar solution (black dashed-dotted lines) de-
termined with the four parameters of Case 1 for: (a) drop footprint, (b) longitudinal thickness profile along the filament
(x-axis), and (c) contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and
θadv shown in Fig. 1.

Case 2: Measure (wx, wy,hmax, θx) and calculate θy from Eq. (21). Figure 13 shows the compar-
ison with experiments. While the thickness profile in Fig. 13(b) does not show any significant
departure from the experimental data, the comparison of the footprint shape in Fig. 13(a) is worse
than before. Similarly to Case 1, the angular distribution of the contact angle in Fig. 13(c) shows
larger differences. In this case, the use of Eq. (21) overestimates θy in about 2.6% with respect to the
measured value. This difference, though seemingly small, is important since it prevents the solution
from giving a plateau region at the maximum contact angle. Also, it affects the curvature of the
transition region towards the minimum.

Case 3: Measure (wx,hmax, θx, θy) and calculate wy from Eq. (21) (see Fig. 14). The footprint
shown in Fig. 14(a) is a bit worse than that for Case 2 basically because now there is an overesti-
mation of about 1.9% for wy from the use of Eq. (21). The thickness profile in Fig. 14(b) is again
in very good agreement with the experimental data, and the angular distribution of the contact angle
in Fig. 14(c) is better than in Case 2, since no over shooting is obtained at the maximum region.
Note that if θy were taken from the hysteresis cycle as being equal θadv, instead of using Eq. (21),
then these results could have been obtained without the need of the top-view picture, since the
information in the side-view picture is enough. Thus, in this case, the number of measured values
for the polar solution can be reduced to only three, as it happens in the Cartesian one.

Case 4: Measure (wx, wy, θx, θy) and calculate hmax by approximating the thickness profile
along x-axis with an arc of a circle (see Fig. 15). In fact, from the values of wx and θx it is possible
to approximate the longitudinal thickness profile with an arc of a circle, and then the value of hmax

can be estimated with an error of the order of 3% with respect to the actually measured value. The
quality of the adjustment can be seen in Fig. 15(b). The adjustment of the footprint is very good

FIG. 13. Comparison between the experimental data (red points) and the polar solution (black dashed-dotted lines) de-
termined with the four parameters of Case 2 for: (a) drop footprint, (b) longitudinal thickness profile along the filament
(x-axis), and (c) contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and
θadv shown in Fig. 1.
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FIG. 14. Comparison between the experimental data (red points) and the polar solution (black dashed-dotted lines) de-
termined with the four parameters of Case 3 for: (a) drop footprint, (b) longitudinal thickness profile along the filament
(x-axis), and (c) contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and
θadv shown in Fig. 1.

because all parameters used for its calculation are measured. However, the small difference in hmax

has strong consequences in the angular distribution of θe (see Fig. 15(c)). Even if the solution is
in agreement with the experimental data in the region around the minimum, the transition region
presents an unexpected behavior despite the fact that θy is measured. The most remarkable differ-
ence is in the zone of the maximum, where two peaks with larger contact angles show up instead
of the expected plateau. This result suggests that the calculated solution for this case does not lead
to a smooth surface and warns us about the importance of using an accurate value for hmax for the
prediction of the azimuthal distribution of the contact angle.

VI. FULL NUMERICAL SIMULATIONS

Since both analytical solutions, the Cartesian and the polar ones, were obtained within the
framework of the lubrication approximation, which is valid for small free surface slopes and contact
angles, we perform in this section numerical simulations of the full Navier–Stokes equation.

In order to obtain the shape of the sessile drop, we calculate the evolution of a liquid filament
on a partially wetting substrate by solving numerically Eq. (6). We simulate the real experimental
configuration that actually leads to the drop under study without any assumption about the small-
ness or not of the contact angles, as required by the lubrication approximation. Several particular
characteristics of the flow must be taken into account to perform this simulation. First, the well
known divergence at moving contact lines must be overcome. This is done by relaxing the no slip
boundary condition at the substrate through the Navier formulation,

FIG. 15. Comparison between the experimental data (red points) and the polar solution (black dashed-dotted lines) de-
termined with the four parameters of Case 4 for: (a) drop footprint, (b) longitudinal thickness profile along the filament
(x-axis), and (c) contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to θrcd and
θadv shown in Fig. 1.
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vx, y = ℓ
∂vx, y

∂z
, (29)

where ℓ is the slip length. Second, the filament must be short enough to avoid pinching necks along
it, because this change of topology is not supported by regular numerical schemes.30 Thus, the
filament must evolve into a single drop, and its volume must then be equal to that of the resulting
drop. Here, we consider that the initial filament can be described by a cylindrical cap of length L
and width w, ended by two spherical caps. The curvature radius, R, of both the cylinder and the
spheres is given by, R = w/(2 sin θ0), where θ0 is initial contact angle of the filament. Consequently,
the thickness of the filament is h0 = R(1 − cos θ0).

Finally, the hysteretic behavior of the contact angle is introduced by ascribing different values
of θe to different regions of the substrate. Thus, we consider that the region originally occupied by
the filament (the rectangular area limited by −w ≤ x ≤ L + w, and −w/2 ≤ y ≤ w/2) has θe = θrcd,
while for the rest of the substrate it corresponds θe = θadv. This spatial distribution of θe assumes
that the contact line will only recede in the region where the filament initially sits, and only ad-
vances outside of it. Naturally, the step function that this description implies should be slightly
smoothed to avoid numerical issues. Moreover, the experiments show that in a region close and
outside of the filament contact line both kinds of motion may take place. Therefore, we also
consider a wider smooth transition of θe along y-direction (normal to the filament) within a certain
distance δ, which should be of the order of w. Thus, we construct the wettability of the substrate as

θe(x, y) = θadv + θx(x) θy(y) (θrcd − θadv) , (30)

where

θx =
tanh [qx(x + w/2)] − tanh [qx(x − L − w/2)]

2
,

θy =
tanh

�
qy(y + w/2 + δ/2)� − tanh

�
qy(y − w/2 − δ/2)�

2
, (31)

where qx and qy set the average slope of the transition region. Here, we take qx = 100, qy = 50, and
δ = 1.1w/2. It should be noted that the final drop shape does not depend critically on the values of
these parameters, provided they keep this order of magnitude and yield a relatively thin transition
region.

We use a finite element technique in a domain which deforms with the moving fluid interface
by using the Arbitrary Lagrangian-Eulerian (ALE) formulation.31–34 The interface displacement is
smoothly propagated throughout the domain mesh using the Winslow smoothing algorithm.35,36 The
main advantage of this technique compared the level set or phase field techniques is that the fluid
interface remains sharp.37 The main drawback, on the other hand, is that the mesh connectivity
must remain the same, which precludes the modeling of situations for which the topology might
change (rupture of the filament). The default mesh used throughout is unstructured and typically has
3 × 104 triangular elements (linear elements for both velocity and pressure). Automatic remeshing is
enabled to allow the solution to proceed even for large domain deformation when the mesh becomes
severely distorted. The mesh nodes are constrained to the plane of the boundary they belong to for
all but the free surface.

To simulate the evolution of a short filament that leads to a single drop, we calculate the
filament length, L, for a given experimental value of the width, w. This can be easily done by
knowing the drop volume, Vdrop, under study. For the case in Fig. 2, we have w = 0.5062 and,
with θ0 = 53.7◦, we find L = 5.296. Assuming θrcd = 36.5◦ and θadv = 53.7◦, we obtain the time
evolution of the footprint shown in Fig. 16(a). In these simulations we use La = 0.005, as given by
the experimental parameters, and set ℓ = 0.005. The runs with smaller values of ℓ produced only
negligible differences.

At early times, the ends of the filament dewet and a bulge is formed at each end. So, the
side parts of the bulge contact line lie outside the filament footprint: the most external portions
of this contact line dewet, while the most internal ones advance towards the center of the fila-
ment (x = L/2). This is in agreement with experimental observations and justifies the choice of a
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FIG. 16. Time evolution of: (a) the contact line (footprint), and (b) the thickness profile along the filament axis (y = 0), from
t = 0 up to t = 200 for a time step ∆t = 20.

wide transition region for θy, which yields intermediate angles in the region close and outside the
filament footprint.

In Fig. 16(b), we plot the thickness profile along the meridian plane (y = 0). At early times, a
depression appears at the middle of the filament, but since L is relatively short, the behavior of the
thickness there changes, and it starts growing for later times, thus building up the central region of
the drop.

For very large times, say t = 200, the drop reaches a static shape at rest and adopts a foot-
print very close to that in the experiments. In order to validate the numerical simulations, we first
compare its results with those of the lubrication approximation solutions. To do so, we perform
calculations with smaller contact angles as those in the experiments, namely, one-third of the values
defined above, i.e., we use here θadv = 53.7◦/3 = 17.9◦ and θrcd = 36.5◦/3 = 12.2◦. The comparison
is shown in Fig. 17 (for the Cartesian solution we use θx, θy, and hmax as input parameters).
As expected, very little differences exist among the three curves for the footprints in Fig. 17(a),
and the longitudinal thickness profiles in Fig. 17(b). Interestingly, the numerical simulations show
in Fig. 17(c) a steeper transition between the maximum and minimum contact angles than those
given by the long wave solutions (the small difference of 1◦ at the maximum of the numerical is
probably related to a grid effect). Therefore, except for these details in the angular distribution, the
simulations as posed can be safely used to describe the physical problem in hand.

FIG. 17. Comparison between the numerical footprint (dotted-dashed blue line) with the Cartesian (dashed green line) and
polar (black dotted-dashed line) solutions for small contact angles: (a) drop footprint, (b) longitudinal height profile along the
filament (x-axis), and (c) contact angle distribution around the footprint periphery. The horizontal dashed lines correspond to
θrcd/3 and θadv/3 shown in Fig. 1.
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FIG. 18. Comparison between the experimental data (red points) and the numerical simulations (solid blue lines) for: (a)
drop footprint, (b) longitudinal thickness profile along the filament (x-axis), and (c) contact angle distribution around the
footprint periphery. The horizontal dashed lines correspond to θrcd and θadv shown in Fig. 1.

Now, we compare in Fig. 18 the numerical solution for large times with the experimental data
for the drop with large contact angles. The footprints comparison in Fig. 18(a) shows that the
simulations are able to account for the slight change of curvature sign in the regions connecting
the receding and advancing apexes, which is a characteristic feature of this type of drops. However,
the simulation overestimates the value of the wx in about 3.7%, and consequently, underestimates
wy in the same amount. This small difference in wx does not have an important effect on the
comparison with the thickness profile, as seen in Fig. 18(b).

As regards to the dependence θe(ϕ), Fig. 18(c) shows that the simulation yields an angular
distribution similar to that of the experiments in the sense that both show steep transitions be-
tween the maximum (θe ≈ θadv) and minimum (θe ≈ θrcd), and a relatively wider plateau at the
maximum region. The differences between numerics and experiments at these extremes (∼1◦) are
due to numerical errors. Interestingly, the equality of ratios in Eq. (21) is satisfied within an error
of 1.5%, which means that the departure of widths and angles is consistent with this basic property
of the solution. In general, this comparison shows that the form used here to emulate the hysteretic
behavior of the contact angle is appropriate to study this kind of problems.

VII. SUMMARY AND CONCLUSIONS

In this work we study in detail the morphology of sessile drops with non-circular footprints. In
particular, we focus on the kind of drops that result from the breakup of a liquid filament placed on
a horizontal substrate under partial wetting conditions. In order to obtain this type of wetting when
the liquid (silicon oil PDMS) is in contact with the glass substrate, we modify its surface energy
by coating it with a fluorinated solution. The resulting wettability is characterized by a hysteresis
curve for the contact angle, so that the advancing and receding angles are known parameters of the
system while modeling of the flow. By means of optical techniques, we are able to measure the
drop footprint, the thickness profile along the filament axis, and the azimuthal distribution of contact
angle around the drop periphery.

The shape of a typical static droplet thus obtained is described by using the long wave theory, or
lubrication approximation. Two analytical solutions, in Cartesian and polar coordinates, are found
within this framework. The main goal of looking for these solutions is to be able to predict details
of the drop, which are difficult to measure, such as the shape of the footprint, the thickness profiles,
and the angular distribution of contact angles. We determine these solutions by using a minimum
number of easily measured parameters, such as maximum or minimum diameters, angles, and
thicknesses. The solutions thus obtained are contrasted with detailed experimental measurements to
assess their accuracy.

While the Cartesian solution is restricted by the choice of at most three (measurable) parame-
ters, the polar one is truncated to allow for five of them. In this sense, we also study four different
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ways to combine the parameters necessary to fix the polar solution. Interestingly, the Cartesian solu-
tion provides a simple relationship between the widths of the drop and the contact angles along the
axes of symmetry, which holds with good approximation when compared with experimental data. In
general, the good agreement found in the comparison with the experiments confirms that the lubri-
cation approximation solutions are quantitatively suitable to describe the drops with non-circular
footprints.

Since the experimental drops have relatively large contact angles, and the theoretical model-
ing assumes small values of the free surface slopes, there might remain some doubts about the
comparison with these experiments. So, in order to put in evidence the possible effects related to
the presence of large contact angles, we also compute the drop shape by performing time evolving
simulations of the full Navier–Stokes equation. In these calculations, two main features have to be
included: (a) the relaxation of the contact line singularity by including a slip model at the boundary
condition on the substrate, and (b) the hysteresis of the contact angle. The latter is emulated by
imposing a specific spatial distribution of contact angle as suggested by experimental observations,
that is, by setting θrcd in the region initially occupied by the filament, and θadv outside of it, with a
smoothed and narrow transition region. The simulations are validated with the theoretical solutions
for small contact angles and are also compared with the experimental data. The most remarkable
result of these simulations is that the effect of having large contact angles is to widen the regions
of constant θe around the minimum (θe ≈ θrcd) and maximum (θe ≈ θadv) values, as well as to make
steeper the transitions regions in this angular diagram. A similar effect is also observed with the
polar solution, in better agreement with the experimental data than the Cartesian one.
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