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Abstract

The aim of this paper is to study some continuous-time bivariate Markov processes arising from
group representation theory. The first component (level) can be either discrete (quasi-birth-and-death
processes) or continuous (switching diffusion processes), while the second component (phase) will always
be discrete and finite. The infinitesimal operators of these processes will be now matrix-valued (either a
block tridiagonal matrix or a matrix-valued second-order differential operator). The matrix-valued spherical
functions associated to the compact symmetric pair (SU(2) × SU(2), diag SU(2)) will be eigenfunctions of
these infinitesimal operators, so we can perform spectral analysis and study directly some probabilistic
aspects of these processes. Among the models we study there will be rational extensions of the one-server
queue and Wright–Fisher models involving only mutation effects.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

It is very well known that many important results of one-dimensional stochastic processes can
be obtained by using spectral methods. In particular, for Markov processes, many probabilistic
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aspects can be analyzed in terms of the (orthogonal) eigenfunctions and eigenvalues of the
infinitesimal operator associated with the Markov process. In a series of papers in 1950–1960, S.
Karlin and J. McGregor studied random walks and birth-and-death processes by using orthogonal
polynomials (see [18–22]). Since the one-step transition probability matrix of the random walk or
the infinitesimal operator of the birth-and-death process are tridiagonal matrices, it is possible to
apply the spectral theorem to find the corresponding Borel measure associated with the process.
With this measure it is easier to study the transition probabilities, the invariant measure or the
behavior of the states of the process. Many other authors like M. Ismail, G. Valent, H. Dette, D.
P. Maki or E. van Doorn, to mention a few, have studied this connection and other probabilistic
aspects (see e.g. [6,16,30,38,39]). As for diffusion processes, it is also possible to use spectral
methods, but now applied to second-order differential operators. Many authors like H. McKean,
J. F. Barrett, D. G. Lampard, E. Wong or more recently D. Bakry, O. Mazet and B. Griffiths have
studied this connection (see e.g. [3,1,2,10,17,23,32,42]). Prominent examples are the Orstein–
Uhlenbeck process, population growth models or Wright–Fisher models. For a brief account
of the subject and other relations between stochastic processes and orthogonal polynomials,
see [36].

A natural extension in this direction are bivariate Markov processes with discrete and finite
second component. Now the state space is two-dimensional of the form S×{1, 2, . . . , N }, where
S ⊆ R is either a discrete set or a continuous interval, and N is a positive integer. The first
component is usually called the level, while the second one is called the phase. If S is discrete
these processes are typically called quasi-birth-and-death processes (see [29,33]), while if S is
a continuous real interval, they are called switching diffusion processes (see [31,43]). They key
point to study spectral methods of these processes will be the theory of matrix-valued orthogonal
polynomials. In the last few years many progresses have been made in this direction. For discrete-
time quasi-birth-and-death processes the extension of the Karlin–McGregor formula was given
independently in [8,11], while for continuous-time in [7]. For switching diffusion processes
see [5].

A natural source of examples comes from group representation theory. There is a close
relationship between special functions and harmonic analysis on groups that has been worked
out for various classes of groups. E. Cartan and H. Weyl linked the classical theory of spherical
harmonics with that of group representations showing that spherical harmonics arise naturally
from the study of functions on the n-dimensional sphere Sn

= SO(n+1)/SO(n). More generally,
it is well known that the zonal spherical functions associated to real compact symmetric spaces
can be realized as Jacobi polynomials. The link between zonal spherical functions and orthogonal
polynomials has a matrix-valued analogue that was first investigated in [13] for the compact
symmetric pair (G, K ) = (SU(3),U(2)). The matrix-valued spherical functions are related to an
auxiliary function which is an eigenfunction of a matrix-valued differential operator related to
the Casimir operator of the group G and that is given explicitly. A probabilistic interpretation for
this case is given in [12] and is extended in [14]. An alternative approach to relate matrix-valued
spherical functions and matrix-valued orthogonal polynomials is given in [27,28,15,41], where
more general families of symmetric pairs (G, K ) are treated. In this construction, one obtains
a family of matrix-valued functions Ψn , together with a matrix-valued differential operator Ω ,
for which the functions Ψn are eigenfunctions. The first of these functions, Ψ0, turns out to be
invertible, and the sequence Pn = ΨnΨ

−1
0 is a sequence of matrix-valued orthogonal polynomials

with respect to an appropriate weight function which are eigenfunctions of a matrix-valued
hypergeometric operator as in [37].

The bispectral property of these examples will give us naturally a block tridiagonal Jacobi
matrix (or a three-term recurrence relation) and a matrix-valued second-order differential
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operator, along with their eigenfunctions and eigenvalues. After appropriate conjugations it
will be possible to transform these operators into infinitesimal operators of bivariate Markov
processes. From the block tridiagonal Jacobi matrix we will get the infinitesimal operator of
a continuous-time level-dependent quasi-birth-and-death process, while from the matrix-valued
second-order differential operator we will get a switching diffusion process. The structure of the
group will divide both processes into two independent processes, which will be studied in detail.
For simplicity, we will focus on the lowest dimensional cases.

The structure of the paper goes as follows. In Section 2 we will give a brief account of
matrix-valued spherical functions, focusing on the example for the pair (G, K ) = (SU(2) ×

SU(2), diag SU(2)) studied in [27,28] and the one-parameter extension given in [25,41]. The
second-order differential operator, three-term recurrence relation, weight matrix, norms and other
structural formulas to transform the operators into operators with stochastic interpretation will be
given. The reader interested exclusively in the stochastic models could skip this section and go
directly to Sections 3 and 4. In Section 3 we will study in detail the 3 × 3 case and we will use the
spectral analysis to study several probabilistic aspects. From the block tridiagonal Jacobi matrix
we will get two birth-and-death models. The first one is a regular birth-and-death process, while
the second one is a continuous-time quasi-birth-and-death process with two phases (there are
very few examples in the literature in this direction). Both can be viewed as rational extensions
of the one-server queue with one free parameter. From the second-order differential operator we
will get two diffusion models. The first one is a regular diffusion process with killing, while the
second one is a switching diffusion process with two phases. Both can be viewed as extensions
of the Wright–Fisher model involving only mutation effects. Finally, in Section 4 we will give
some remarks about the 5 × 5 case, especially for the second-order differential operator. In this
case we will get two models, a switching diffusion process with three phases, and a switching
diffusion process with two phases with killing. The spectral analysis of this last process appears
to be new.

2. Spherical functions and differential operators

In this section Ei j will denote the matrix with 1 at the entry (i, j) and 0 elsewhere (i, j ≥ 0).
Additionally we will use the following N × N diagonal matrices

J =

N−1∑
i=0

(N − 1 − i)Ei i , J̆ = (N − 1)I − J =

N−1∑
i=0

i Ei i , (2.1)

and the nilpotent matrix of order N

A =

N−2∑
i=0

Ei,i+1. (2.2)

For any matrix M ∈ CN×N , M∗ will denote the conjugate transpose of M . Also IN will denote,
as usual, the identity matrix of dimension N × N .

2.1. Matrix-valued spherical functions

Here we discuss the family of matrix-valued spherical functions given in [27,28] for the pair
(G, K ) = (SU(2)×SU(2), diag SU(2)) and the one-parameter extension [25,41]. For each ℓ ∈ N,
if we let N = 2ℓ + 1, it was shown in [27,28] that there exists a family of CN×N -valued
functions {Ψn : n ∈ N0}, defined on the interval [0, 1]. The family is constructed by means
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of the spherical functions associated to (G, K ). All the properties of the spherical functions,
like e.g. orthogonality relations, being eigenfunctions of differential operators, can be translated
into properties of the functions Ψn . This family has a one parameter extension {Ψ (ν)

n }n≥0 given
in [25,41]. The functions Ψ (ν)

n satisfy the matrix-valued differential equation

Ω (ν)Ψ (ν)
n (y) = y(1 − y)

d2Ψ (ν)
n (y)

dy2 + a(ν)(y)
dΨ (ν)

n (y)
dy

+ F (ν)(y)Ψ (ν)
n (y)

= Ψ (ν)
n (y)Λ(ν)

n , (2.3)

where a(ν)(y) = 1/2 + ν − y(2ν + 1) and

F (ν)(y) = ℓ(ℓ+ 2) − (ν − 1)(2ℓ+ ν + 1) −
1

2y(1 − y)

[
ℓ(ν − 1)(1 − 2y)2

+ ℓ+ J J̆
]

(2.4)

+ J J̆ +
1 − 2y

4y(1 − y)

(
J̆ A∗(J + ν − 1) + J A( J̆ + ν − 1)

)
,

where J, J̆ and A are given by (2.1) and (2.2).

2.2. Matrix-valued orthogonal polynomials

Matrix-valued spherical functions are closely related to matrix-valued orthogonal polynomi-
als. In fact we have

Ψ (ν)
n (y) =

[
Ψ ∗

0 (y)P (ν)
n (y)

]∗
,

where Ψ0(y) is independent of ν and (P (ν)
n )n is a family of monic matrix-valued orthogonal

polynomials satisfying∫ 1

0
P (ν)

n (y) W (ν)(y)
(
P (ν)

m (y)
)∗ dy = δnm∥P (ν)

n ∥
2
W (ν) , (2.5)

where ∥P (ν)
n ∥

2
W (ν) is the matrix-valued norm of the monic polynomial P (ν)

n and it is given by the
diagonal matrix with entries(

∥P (ν)
n ∥

2
W (ν)

)
k,k =

√
π

2 · 4n

Γ (ν + 1/2)
Γ (ν + 1)

ν(2ℓ+ ν + n)
ν + n

×
k! (2ℓ− k)! (n + ν + 1)2ℓ

(2ℓ)! (n + ν + 1)k(n + ν + 1)2ℓ−k
(2.6)

×
n! (ℓ+ 1/2 + ν)n(2ℓ+ ν)n(ℓ+ ν)n

(2ℓ+ ν + 1)n(ν + k)n(2ℓ+ 2ν + n)n(2ℓ+ ν − k)n
,

and the weight matrix is given by

W (ν)(y) =
4ν−ℓ(ν + ℓ)ℓ+1

2(ν + 1/2)ℓ
[y(1 − y)]ν−1/2 (Ψ0(y))∗T (ν)Ψ0(y), (2.7)

T (ν)
i j = δi j

(
2ℓ
i

)
(ν)i

(ν + 2ℓ− i)i
.

Observe that the diagonal entries of T (ν)
i j correspond up to a constant to the nodes of the beta-

binomial distribution (α = β = ν). Note also that the ν-dependence on the weight matrix is only
located in the scalar weight [y(1 − y)]ν−1/2 and the constant diagonal matrix T (ν). The function
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Ψ0(y) is the building block of the orthogonality measure and has been calculated explicitly
in [27]. A nice compact formula for Ψ0(y) is given in [41]. Let K be the constant matrix with
entries

Ki, j = K j (i) = K j (i, 1/2, 2ℓ),

where Kn(x, p, N ) are the Krawtchouk polynomials, see e.g. [24, §1.10]. Then we have

Ψ0(y) = K MΥ (y)K ∗, (2.8)

where Υ ,M are the diagonal matrices

Υ (y) j j = (−1)
3 j
2 y

j
2 (1 − y)

2ℓ− j
2 , M j j =

(
2ℓ
j

)
.

Since the spherical functions Ψ (ν)
n are eigenfunctions of Ω (ν), the matrix-valued orthogonal

polynomials (P (ν)
n )∗ are eigenfunctions of the differential operator Ψ−1

0 Ω (ν)Ψ0 which is explicitly
given by

D(ν)
= y(1 − y)∂2

y + (C + ν − y(2ℓ+ 2ν + 1))∂y + V + (ν − 1)(2ℓ+ ν + 1),

∂y =
d

dy
, (2.9)

where

C =
2ℓ+ 1

2
−

1
2

(A∗ J + AJ̆ ), V = J J̆ ,

and J, J̆ and A are given by (2.1) and (2.2). Moreover, the operator D(ν) is symmetric with
respect to W (ν). The eigenvalue for D(ν) (and Ω (ν) in (2.3)) is

Λ(ν)
n = −n(n − 1) − n(2ℓ+ 2ν + 1) + V + (ν − 1)(2ℓ+ ν + 1). (2.10)

Additionally the monic matrix-valued orthogonal polynomials P (ν)
n satisfy a three-term

recurrence relation of the form

y P (ν)
n (y) = P (ν)

n+1(y) + B(ν)
n P (ν)

n (y) + C (ν)
n P (ν)

n−1(y), n ≥ 1, (2.11)

where the coefficients B(ν)
n and C (ν)

n are given by

B(ν)
n =

1
2

−
1
4

J (J + ν − 1) [(J + n + ν − 1)(J + n + ν)]−1 A

−
1
4

J̆ ( J̆ + ν − 1)
[
( J̆ + n + ν − 1)( J̆ + n + ν)

]−1
A∗, n ≥ 0,

and

C (ν)
n =

n(n + ν − 1)(2ℓ+ n + ν)(2ℓ+ n + 2ν − 1)
16

×

[
(J + n + ν − 1)(J + n + ν)( J̆ + n + ν − 1)( J̆ + n + ν)

]−1
, n ≥ 1,

where J, J̆ and A are given by (2.1) and (2.2).

2.3. The function S

In this subsection we turn the differential operator Ω (ν) into a differential operator which has a
form that allows for a probabilistic interpretation by conjugating with a matrix-valued function.
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The appropriate function is given by a diagonal matrix whose diagonal entries are those of the
ℓth column of Ψ0(y). We assume ℓ ∈ N, so that 2ℓ+ 1 is odd. The ℓth column (and the ℓth row)
of the matrix Ψ0(y) is a polynomial in y. More precisely from (2.8), it is given explicitly by

(Ψ0)k,ℓ =

2ℓ∑
h=0

(
2ℓ
h

)
Kk(h)Kℓ(h)(−1)

3h
2 y

h
2 (1 − y)

2ℓ−h
2

=

ℓ∑
h=0

(−1)h
(

2ℓ
2h

)
K2h(k)K2h(ℓ)yh(1 − y)ℓ−h

=

ℓ∑
h=0

⎡⎣(−1)h
(
ℓ

h

) h∑
j=0

(−1) j
(

h
j

)
K2 j (k)

⎤⎦ yh, 0 ≤ k ≤ 2ℓ. (2.12)

Here we are using that Kh(ℓ) = 0 if h is odd and h ≤ 2ℓ − 1, the binomial theorem and the
identities

K2 j (ℓ) = (−1) j
(
ℓ

j

)(
2ℓ
2 j

)−1

,

(
ℓ

j

)(
ℓ− j
h − j

)
=

(
ℓ

h

)(
h
j

)
.

Lemma 2.1. We have
h∑

j=0

(−1) j
(

h
j

)
K2 j (k) =

(−k)h(−2ℓ+ k)h

(−ℓ)h(−ℓ+ 1/2)h
. (2.13)

Proof. First we rewrite the Krawtchouk polynomial K2 j (k) = Kk(2 j) as in [24, Formula
(1.10.1)] and invert the order of summation. We obtain

h∑
j=0

(−1) j
(

h
j

)
K2 j (k) =

k∑
i=0

(−1)i 2i (−k)i

(−2ℓ)i

h∑
j=0

(−1) j
(

h
j

)(
2 j
i

)
. (2.14)

The inner sum is given explicitly by
h∑

j=0

(−1) j
(

h
j

)(
2 j
i

)
= (−1)h22h−i

(
h

i − h

)
,

so that (2.14) becomes, using (−k)i/(−2ℓ)i =
(2ℓ−i

2ℓ−i

)(2ℓ
k

)−1
, the following expression

(−1)h22h
(

2ℓ
k

)−1 k∑
i=0

(−1)i
(

2ℓ− i
2ℓ− i

)(
h

i − h

)
= (−1)h+k22h

(
2ℓ
k

)−1(h + k − 2ℓ− 1
k − h

)
.

The last sum can be evaluated explicitly using [9, Formula (5.25)]. Finally, a straightforward
computation shows that the last expression is exactly the same as the one given on the right hand
side of (2.13). □

Now we construct a diagonal matrix S(y) with the entries of the ℓth column of Ψ0(y) as
diagonal entries. Then we have

S(y) =

2ℓ∑
i=0

(Ψ0)i,ℓ Ei i . (2.15)
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Lemma 2.2. For all k = 0, . . . , 2ℓ, we have
S(y)k+1,k+1

S(y)k,k
≥ 0, for y ∈ [0, 1/2),

S(y)k+1,k+1

S(y)k,k
≤ 0, for y ∈ (1/2, 1].

Proof. First we rewrite the entries of S in the basis {(1 − 2y) j
}. It follows from (2.12) and

Lemma 2.1 that

S(y)k,k = (Ψ0)k,ℓ =

k∑
j=0

αk, j (1 − 2y) j ,

αk, j =
(−1) j

j !

k− j∑
s=0

2−s− j (−k)s+ j (−2ℓ+ k)s+ j

s!(−ℓ+ 1/2)s+ j
.

Note that

αk, j =
(−1) j 2− j (−k) j (−2ℓ+ k) j

j !(−ℓ+ 1/2) j

k− j∑
s=0

(−k + j)s (−2ℓ+ k + j)s

s!(−ℓ+ j + 1/2)s
2−s ,

=
(−1) j 2− j (−k) j (−2ℓ+ k) j

j !(−ℓ+ 1/2) j
2 F1

(
−k + j,−2ℓ+ k + j

−ℓ+ j + 1/2
; 1/2

)
,

=
(−1) j 2− j (−k) j (−2ℓ+ k) j

j !(−ℓ+ 1/2) j

(k − j)!
(−2ℓ+ 2 j)k− j

C (−ℓ+ j)
k− j (0)

=

⎧⎨⎩
0, if k − j is odd,
(−1) j 2− j (−k) j (−2ℓ+ k) j

j !(−ℓ+ 1/2) j

(k − j)!
(−2ℓ+ 2 j)k− j

(−1)(k− j)/2(−ℓ+ j)(k− j)/2

((k − j)/2)!
, if k − j is even.

=

⎧⎨⎩
0, if k − j is odd,
k!(2ℓ− k − j + 1) j (ℓ− (k + j)/2 + 1)(k− j)/2

2 j j !((k − j)/2)!(ℓ− j + 1/2) j
, if k − j is even.

The third equality comes from the definition of Gegenbauer polynomials in terms of the
hypergeometric function (see [24, Formula (1.8.15)]), while the fourth equality comes from the
value of the Gegenbauer polynomials at zero, see [34, Table 18.6.1]. Observe that all coefficients
αk, j are nonnegative. Therefore we have

S(y)2k,2k =

k∑
j=0

α2k,2 j (1 − 2y)2 j , k = 0, 1, . . . , ℓ,

S(y)2k+1,2k+1 = (1 − 2y)
k∑

j=0

α2k+1,2 j+1(1 − 2y)2 j , k = 0, 1, . . . , ℓ− 1,

from which the lemma easily follows. □
Proposition 2.3. Let Ξ = S−1Ω (ν)S, where Ω (ν) is given by (2.3). Then we have

Ξ = y(1 − y)∂2
y + A(ν)(y)∂y + Q(ν)(y), ∂y =

d
dy
, (2.16)

where

A(ν)(y) = 2y(1 − y)S(y)−1S′(y) + a(ν)(y),

Q(ν)(y) = y(1 − y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1 F (ν)(y)S(y).
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Moreover, the sum of the rows of Q(ν)(y) − (Λ(ν)
0 )ℓ,ℓ and the off-diagonal terms of Q(ν) are

nonnegative for all y ∈ [0, 1].

Proof. It follows from (2.3) that the spherical functions Ψ (ν)
n are solutions of the differential

equation

y(1 − y)
[
Ψ (ν)

n (y)
]′′

+ a(ν)(y)
[
Ψ (ν)

n (y)
]′

+ F (ν)(y)Ψ (ν)
n (y) = Ψ (ν)

n (y)Λ(ν)
n ,

where F (ν)(y) is defined by (2.4) and Λ(ν)
n by (2.10). A straightforward computation shows that

the function χn = S−1Ψ (ν)
n satisfies the following differential equation:

y(1 − y)χ ′′

n (y) + (2y(1 − y)S(y)−1S′(y) + a(ν)(y))χ ′

n(y)

+ [y(1 − y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1 F (ν)(y)S(y)]χn(y)

= χn(y)Λ(ν)
n .

This proves the first statement of the proposition. Observe that the fact that the sum of the rows
of Q(ν)(y) − (Λ(ν)

0 )ℓ,ℓ is zero, is equivalent to

[y(1 − y)S(y)−1S′′(y) + a(ν)(y)S(y)−1S′(y) + S(y)−1 F (ν)(y)S(y) − (Λ(ν)
0 )ℓ,ℓ]e2ℓ+1 = 0,

where e∗

2ℓ+1 = (1, 1, . . . , 1) ∈ C2ℓ+1, which is, in turn, equivalent to

[y(1 − y)S′′(y) + a(ν)(y)S′(y) + F (ν)(y)S(y) − (Λ(ν)
0 )ℓ,ℓ]e2ℓ+1 = 0.

If we denote by (Ψ0)ℓ the ℓth column of Ψ0, it follows from (2.15) that

y(1 − y)(Ψ0)′′ℓ (y) + a(ν)(y)(Ψ0)′ℓ(y) + F (ν)(y)(Ψ0)ℓ(y) = (Λ(ν)
0 )ℓ,ℓ,

which is the ℓth column of (2.3).
Finally, the off-diagonal terms of Q(ν) come from the term S(y)−1 F (ν)(y)S(y). More precisely

we have

(S(y)−1 F (ν)(y)S(y))k,k+1 =
i(2ℓ+ ν − k)(1 − 2y)

4y(1 − y)
S(y)k+1,k+1

S(y)k,k
,

which is nonnegative for all y ∈ [0, 1] by Lemma 2.2. The proof for the (k, k − 1)th entry is
analogous. This completes the proof of the proposition. □

Remark 2.4. There are two properties of the matrix-valued function Q(ν) which are essential in
the forthcoming sections: first, the sum of the rows is equal to zero and second, the off-diagonal
terms are nonnegative for y ∈ [0, 1].

It follows from the proof of Proposition 2.3 that, for the sum of the rows of Q(ν) to be zero, the
diagonal matrix S can be replaced by any column of the function Ψ (ν)

n (y), viewed as a diagonal
matrix. Our specific choice of S is due to the fact that it has a simple expression that allows us to
verify the second property of Q(ν).

The proof of the first property follows from a general argument that can be extended in
a straightforward way to any of the families of matrix-valued spherical functions associated
to compact Gelfand Pairs studied in [15,40]. The main challenge in finding probabilistic
interpretations for the new families is to find a suitable diagonal matrix S so that the second
property holds.
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2.4. Block reducibility of the weight matrix

The commutant algebra of the weight W (ν)(y), denoted by Z (ν)
= {T ∈ M2ℓ+1(C) |

[T,W (ν)(y)] = 0 ∀y ∈ [0, 1]}, was computed in [25, Proposition 2.6] where it was shown that
it is generated by the matrix H , where H ∈ M2ℓ+1(C) is the self-adjoint involution defined
by H : e j ↦→ e2ℓ− j . Therefore there is an orthogonal decomposition with respect to the
±1-eigenspaces of H . More precisely, let Y defined by

Y =
1

√
2

(
I
ℓ+ 1

2
H
ℓ+ 1

2
−H

ℓ+ 1
2

I
ℓ+ 1

2

)
, if ℓ =

2n + 1
2

, n ∈ N,

Y =
1

√
2

⎛⎝ Iℓ 0 Hℓ

0
√

2 0
−Hℓ 0 Iℓ

⎞⎠ , if ℓ ∈ N.

(2.17)

Then

W̃ (y) = Y W (ν)(y)Y ∗
=

(
W1(y) 0

0 W2(y)

)
,

where W1(y) is a (ℓ + 1) × (ℓ + 1) weight matrix and W2(y) is a ℓ × ℓ weight matrix. Observe
that by [26, Example 4.2] no further non-orthogonal decomposition is possible. We will use this
block matrix decomposition in the next section to analyze two independent processes generated
by the weight matrices W1(y) and W2(y). As we will see the probabilistic interpretation of these
examples will not change under this transformation.

3. The ℓ = 1 case

For the ℓ = 1 case, the matrix Y in (2.17) is given by

Y =
1

√
2

⎛⎝ 1 0 1
0

√
2 0

−1 0 1

⎞⎠ . (3.1)

Therefore

W̃ (y) = Y W (ν)(y)Y ∗
=

⎛⎝ W1(y)
0
0

0 0 w2(y)

⎞⎠ , y ∈ [0, 1],

where W1(y) is a 2 × 2 weight matrix and w2(y) is a positive scalar weight. This matrix Y is
unique up to linear polynomial combinations of Y . For this case, in order to study conveniently
the stochastic processes behind, it will be appropriate to take different matrix transformations.

3.1. Two birth-and-death models

We take in this case the transformation matrix T given by

T = I3 + Y 2
=

⎛⎝ 1 0 1
0 2 0

−1 0 1

⎞⎠ ,
where Y is given by (3.1). Consider the monic matrix-valued orthogonal polynomials P (ν)

n (y)
corresponding to the weight matrix W (ν)(y) defined in (2.7). With this transformation we
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have

W̃ (y) = T W (ν)(y)T ∗
=

⎛⎝ W1(y)
0
0

0 0 w2(y)

⎞⎠ , y ∈ [0, 1],

and

P̂n(y) = T P (ν)
n (y)T −1

=

⎛⎝ Pn,1(y)
0
0

0 0 pn,2(y)

⎞⎠ ,
where P̂n(y) is again a monic family. We normalize this family conveniently choosing a sequence
of diagonal matrices Ln such that Qn(y) = Ln P̂n(y) satisfies

Qn(0)e3 = e3, (3.2)

where eN denotes the column vector of dimension N of all components equal to 1, i.e. eN =

(1, 1, . . . , 1)∗. This sequence of diagonal matrices is given by

L2n = 4n

⎛⎜⎜⎜⎜⎜⎝
(ν + n + 1)n+1

(1 + ν)(ν + 3/2)n
0 0

0
(ν + 2n)(ν + n + 1)n

ν(ν + 3/2)n
0

0 0
(ν + n + 1)n

(ν + 3/2)n

⎞⎟⎟⎟⎟⎟⎠ , n ≥ 0,

and

L2n+1 = −2 · 4n

⎛⎜⎜⎜⎜⎜⎝
(ν + n + 2)n+1

(1 + ν)(ν + 3/2)n
0 0

0
(ν + 2n + 1)(ν + n + 2)n

ν(ν + 3/2)n
0

0 0
(ν + n + 2)n

(ν + 3/2)n

⎞⎟⎟⎟⎟⎟⎠ , n ≥ 0.

Qn can also be divided by blocks

Qn(y) =

⎛⎝ Qn,1(y)
0
0

0 0 qn,2(y)

⎞⎠ . (3.3)

Observe also that the norms of Qn with respect to W̃ are related with the norms of P (ν)
n with

respect to W (ν) as follows

∥Qn∥
2
W̃ = LnT ∥P (ν)

n ∥
2
W (ν) (LnT )∗, n ≥ 0, (3.4)

where ∥P (ν)
n ∥

2
W (ν) are given by (2.6).

From (2.11) we see that the sequence of matrix-valued orthogonal polynomials Qn(y) satisfies
a three-term recurrence relation of the form

− yQn(y) = An Qn+1(y) + Bn Qn(y) + Cn Qn−1(y), (3.5)
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where the coefficients are given by

An = −Ln L−1
n+1 =

⎛⎜⎝
2ν+n+2

4(ν+n+2) 0 0
0 (n+ν)(2ν+n+2)

4(ν+n+1)2 0
0 0 2ν+n+2

4(ν+n+1)

⎞⎟⎠ , n ≥ 0,

Bn = −LnT B(ν)
n (LnT )−1

=

⎛⎜⎝ −
1
2

ν
2(ν+n)(ν+n+2) 0

1+ν

2(ν+n+1)2 −
1
2 0

0 0 −
1
2

⎞⎟⎠ , n ≥ 0,

Cn = −LnT C (ν)
n (Ln−1T )−1

=

⎛⎜⎝
n

4(ν+n) 0 0
0 n(ν+n+2)

4(ν+n+1)2 0
0 0 n

4(ν+n+1)

⎞⎟⎠ , n ≥ 1.

The corresponding Jacobi matrix is a block tridiagonal matrix with the property that the diagonal
entries are negative, the off-diagonal entries are nonnegative and the sum of each row equals 0
(as a consequence of (3.2) and (3.5)). Therefore the Jacobi matrix is the matrix of an infinitesimal
operator associated with a continuous-time quasi-birth-and-death process with two-dimensional
state space N×{1, 2, 3}. As we can see from the division by blocks of the coefficients An, Bn,Cn ,
this process splits into two independent processes. The first one is a continuous-time quasi-birth-
and-death process with two-dimensional state space N × {1, 2} with coefficients

An,1 =

⎛⎜⎝
2ν + n + 2

4(ν + n + 2)
0

0
(n + ν)(2ν + n + 2)

4(ν + n + 1)2

⎞⎟⎠ , n ≥ 0,

Bn,1 =

⎛⎜⎝ −
1
2

ν

2(ν + n)(ν + n + 2)
1 + ν

2(ν + n + 1)2 −
1
2

⎞⎟⎠ , n ≥ 0, (3.6)

Cn,1 =

⎛⎜⎝
n

4(ν + n)
0

0
n(ν + n + 2)
4(ν + n + 1)2

⎞⎟⎠ , n ≥ 1.

Therefore, the matrix of the infinitesimal operator (conservative) is a pentadiagonal matrix given
by

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
1
2

1
2(ν+2)

ν+1
2(ν+2) 0 0 0 0 0 · · ·

1
2(ν+1) −

1
2 0 ν

2(ν+1) 0 0 0 0 · · ·

1
4(ν+1) 0 −

1
2

ν
2(ν+1)(ν+3)

2ν+3
4(ν+3) 0 0 0 · · ·

0 ν+3
4(ν+2)2

1+ν

2(ν+2)2
−

1
2 0 (1+ν)(2ν+3)

4(ν+2)2
0 0 · · ·

0 0 1
2(ν+2) 0 −

1
2

ν
2(ν+2)(ν+4)

ν+2
2(ν+4) 0 · · ·

0 0 0 ν+4
2(ν+3)2

1+ν

2(ν+3)2
−

1
2 0 (2+ν)2

2(ν+3)2
· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.7)

The second process is a regular birth-and-death process with rational birth and death parameters
given by

λn =
2ν + n + 2

4(ν + n + 1)
, µn =

n
4(ν + n + 1)

, n ≥ 0. (3.8)
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Therefore, the matrix of the infinitesimal operator (again conservative) is a tridiagonal matrix
given by

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
1
2

1
2

0
1

4(ν + 2)
−

1
2

2ν + 3
4(ν + 2)

0

0
1

2(ν + 3)
−

1
2

ν + 2
2(ν + 3)

0

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.9)

The good thing about these two processes is that we have explicitly all the elements to perform
the spectral analysis (the weights, orthogonal polynomials and norms), so we can have a Karlin–
McGregor formula for the transition probabilities of both processes, which is unique since all
coefficients are bounded (see [3, Section 4.3]). Let us study the probabilistic properties of each
one of these processes.
(1) Let {X t : t ≥ 0} be the birth-and-death process associated with the infinitesimal operator
(3.9). The transition probabilities are given by

P (2)
i j (t) = P(X t = j |X0 = i).

The potential coefficients can be explicitly calculated from the definition of λn and µn in (3.8).
Indeed,

π0 = 1, πn =
2(ν + n + 1)(2ν + 3)n−1

n!
, n ≥ 1.

The scalar weight is given by

w2(y) =
4ν+1(ν + 1)2

ν + 1/2
[y(1 − y)]ν+1/2, y ∈ [0, 1], ν > −3/2. (3.10)

The polynomials qn,2(y) in (3.3) are a special instance of the Gegenbauer polynomials on [0, 1]
with the property that qn,2(0) = 1. In particular, we have that

πn =
∥q0,2∥

2
w2

∥qn,2∥
2
w2

, ∥q0,2∥
2
w2

=

√
π (ν + 2)Γ (ν + 1/2)

Γ (ν + 1)
.

We can therefore perform the spectral analysis of the process and have the Karlin–McGregor
representation

P (2)
i j (t) =

1
∥q j,2∥

2
w2

∫ 1

0
e−yt qi,2(y)q j,2(y)w2(y)dy

=
2(ν + j + 1)(2ν + 3) j−14ν+1Γ (ν + 2)

j !
√
πΓ (ν + 3/2)

×

∫ 1

0
e−yt qi,2(y)q j,2(y)[y(1 − y)]ν+1/2dy.

We can also analyze the recurrence of the process in terms of the weight w2(y). Indeed, a
necessary and sufficient condition in order for the process to be recurrent is that∫ 1

0

w2(y)
y

dy = ∞.



Please cite this article in press as: M.D. de la Iglesia, P. Román, Some bivariate stochastic models arising from group representation theory, Stochastic
Processes and their Applications (2017), https://doi.org/10.1016/j.spa.2017.10.017.

M.D. de la Iglesia, P. Román / Stochastic Processes and their Applications ( ) – 13

Fig. 1. Trajectories of the queue starting at X0 = 1 (the state space is {1, 2, 3, . . .}) given by coefficients (3.8) for the
value of the parameters ν = −5/4 (null recurrent) and ν = 0 (transient).

From the definition (3.10) we see that this is possible only when −3/2 < ν ≤ −1/2. Otherwise
(if ν > −1/2) the process will be transient. For the values where the process is recurrent it is
possible to see that

∑
πn = ∞, so the process will be null recurrent and it can never be positive

recurrent or ergodic. This behavior can be seen in Fig. 1. In the first plot, we fix ν = −5/4
(recurrent), so the trajectories can reach the boundary state 0 recurrently. In the second plot
ν = 0 (transient) so the length of the queue tends to go to infinity and never comes back.

This birth-and-death process can be seen as a rational variant of the one-server queue as the
length of the queue increases. As n → ∞ we see that both birth and death coefficients in (3.8)
converges to 1/4. These coefficients make a difference when the length of the queue is short
depending on the parameter ν (except when ν = −1 where both coefficients are constant). But
when it is growing the queue behaves like the one-server queue.
(2) Let {Z t = (X t , Yt ) : t ≥ 0} be the two-dimensional quasi-birth-and-death process associated
with the infinitesimal operator (3.7). The transition probabilities are given by(

P (1)
i j (t)

)
i ′ j ′

= P(X t = j, Yt = j ′
|X0 = i, Y0 = i ′), i, j ∈ N, i ′, j ′

∈ {1, 2}.

Observe that P (1)(t) is a block matrix. The probability of going from state (i, i ′) to state ( j, j ′)
in time t is given by the element in the position (i ′, j ′) of the matrix P (1)

i j (t). The weight matrix
is supported on [0, 1] and is given by

W1(y) = 4ν+1/2(ν + 2)[y(1 − y)]ν−1/2

×

⎛⎜⎝1 −
2(1 + ν)
ν + 1/2

y(1 − y) 1 − 2y

1 − 2y 1 −
2ν

ν + 1/2
y(1 − y)

⎞⎟⎠ , (3.11)
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where now, in order that the infinitesimal matrix (3.7) has a probabilistic interpretation, we need
to impose ν ≥ 0 (although the weight matrix is well defined for ν > −1/2). Each block entry
(i, j) of P (1)(t) admits a Karlin–McGregor integral representation of the form (see [7])

P (1)
i j (t) =

(∫ 1

0
e−yt Qi,1(y)W1(y)Q∗

j,1(y)dx
)(∫ 1

0
Q j,1(y)W1(y)Q∗

j,1(y)dy
)−1

.

As it was shown in [4] the inverse matrix of the norms of the polynomials Qn,1 in (3.3) are
exactly the matrix-valued potential coefficients, defined by

Π0 = ∥Q0,1∥
−2
W1
,

Πn =

(
∥Qn,1∥

2
W1

)−1
= (C∗

1,1C∗

2,1 · · · C∗

n,1)−1
∥Q0,1∥

−2
W1

A0,1 A1,1 · · · An−1,1,

where An,1 and Cn,1 are defined in (3.6). Since An,1 and Cn,1 are diagonal matrices and the norm
of Q0,1 = I2 is given by

∥Q0,1∥
−2
W1

=
Γ (ν + 1)

√
π (ν + 2)Γ (ν + 1/2)

⎛⎝1 0

0
ν + 1
ν + 2

⎞⎠ ,
we can calculate an explicit expression of the matrix-valued potential coefficients with the help
of (2.6) and (3.4), given by

Π0 = ∥Q0,1∥
−2
W1
,

Πn =
2Γ (ν + 2)(2ν + 3)n−1

√
πn!(ν + 2)Γ (ν + 1/2)

⎛⎜⎝
ν + 1

ν + n + 1
0

0
ν(ν + n + 1)

(ν + n)(ν + n + 2)

⎞⎟⎠ , n ≥ 1.

Not only that, but according to Theorem 3.1 of [4] we can compute explicitly the invariant
measure of the process, given by

π =
(
(Π0e2)∗; (Π1e2)∗(Π2e2)∗; · · ·

)
, e∗

2 = (1, 1),

=
Γ (ν + 1)

√
πΓ (ν + 1/2)(ν + 2)

(
1,
ν + 1
ν + 2

;
2(ν + 1)2

ν + 2
,

2ν(ν + 2)
ν + 3

; · · ·

)
.

We observe that for all values of ν
∞∑

n=0

πn =
Γ (ν + 1)

√
πΓ (ν + 1/2)(ν + 2)

[
1 + 2(ν + 1)2

∞∑
n=1

(2ν + 3)n−1

n!(ν + n + 1)

ν + 1
ν + 2

(
1 + 2ν(ν + 2)

∞∑
n=1

(2ν + 3)n−1(ν + n + 1)
n!(ν + n)(ν + n + 2)

)]
= ∞.

We can analyze the recurrence of the process in terms of the weight W1(y). According to
Theorem 4.1 in [7] the process is α-recurrent if and only if for some l = 1, 2, we have that

e∗

l

(∫
W1(y)
x − α

dy
)

el = ∞,

where e∗

1 = (1, 0) and e∗

2 = (0, 1). Since in our case the process is irreducible and the weight
matrix is supported in the interval [0, 1], then α = 0, in which case α-recurrence is equivalent
to regular recurrence. From the definition (3.11) we see that the process is recurrent only when
0 ≤ ν ≤ 1/2. Otherwise (if ν > 1/2) the process will be transient. For the values where the
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Fig. 2. Trajectories of the queue starting at X0 = 1 and Y0 = 1 (the state space is {1, 2, 3, . . .}×{1, 2}) with infinitesimal
operator (3.7) for the value of the parameters ν = 1/4 (null recurrent) and ν = 1 (transient).

process is recurrent we have that
∑

πn = ∞, so the process will always be null recurrent. This
behavior can be seen in Fig. 2 and it is similar to the previous example.

This quasi-birth-and-death process (with 2 phases) may be viewed as a queue with state space
{0, 1, . . .} and the following behavior. There are two ways of increasing or decreasing the length
of the queue, either by 1 element or by 2. If the process moves along any of the phases, then the
process can add (or remove) 2 elements to the queue. On the contrary, if the process moves from
one phase to another, then the process add (or remove) 1 element to the queue. The transitions of
phases are ruled by entries (1, 2) and (2, 1) of Bn,1 in (3.6). As n → ∞ these coefficients tend to
0, meaning that as the length of the queue increases, it is very unlikely that a transition between
phases occurs. This behavior can be seen more closely in Fig. 3. As n → ∞ the birth and death
rates for each phase tend to 1/4, so it behaves like the one-server queue but adding or removing 2
elements to the queue. Therefore this quasi-birth-and-death process may be viewed as a rational
variation of a couple of one-server queues where the interaction between them is remarkable in
the first states of the queue.

The importance about this example, as far as the authors know, is that it is the first
nontrivial continuous-time level-dependent quasi-birth-and-death process where a complete
spectral analysis can be given.

3.2. Two diffusion models

In this case we have to follow the conjugation given by the matrix S(y) in (2.15) (see also
(2.12) and (2.13)), which it is given by

S(y) =

⎛⎝1 0 0
0 1 − 2y 0
0 0 1

⎞⎠ .
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Fig. 3. Trajectories of the queue starting at X0 = 1 and Y0 = 1 (the state space is {1, 2, 3, . . .}×{1, 2}) with infinitesimal
operator (3.7) for the value of the parameters ν = 1/4 and ν = 1. The possibilities of increasing or decreasing by 1 the
queue are higher when the length of the queue is shorter.

Additionally, we consider the transformation matrix T given by

T = −

√
2

2
I3 + (1 +

√
2)Y −

√
2

2
Y 2

=

⎛⎝ 1 0 1
0 1 0

−1 0 1

⎞⎠ , (3.12)

where Y is given by (3.1). These two transformations allow us to derive second-order differential
operators with stochastic interpretation, according to Proposition 2.3, as well as splitting the
weights and polynomials into blocks, which will not change the probabilistic interpretation of
these operators.

Let {W (ν), D(ν)
} be the pair given by (2.7) and (2.9), respectively. We consider a transforma-

tion of this pair according to the following function

R(y) = Ψ−1
0 (y)S(y)T ∗,

where Ψ0(y) is given by (2.8). The new pair is {W̃ , D̃}, where

W̃ (y) = R∗(y)W (ν)(y)R(y), D̃F(y) = R−1(y)D(ν) [R(y)F(y)] .

Observe that D̃ is the operator (T ∗)−1Ξ T ∗, where Ξ is given in Proposition 2.3. Consider now
P (ν)

n the monic family of matrix-valued orthogonal polynomials with respect to W (ν) given by
(2.5) such that D(ν)(P (ν)

n )∗ = (P (ν)
n )∗Λ(ν)

n , where Λ(ν)
n is given by (2.10). Define the sequence of

matrix-valued functions

Qn(y) = R−1(y)(P (ν)
n (y))∗T ∗. (3.13)

Observe that Qn are no longer real matrix-valued polynomials since

R−1(y) =

⎛⎝ 1 − 2y 1 1 − 2y
1/(1 − 2y) 1 1/(1 − 2y)

2i
√

y(1 − y) 0 −2i
√

y(1 − y)

⎞⎠ .



Please cite this article in press as: M.D. de la Iglesia, P. Román, Some bivariate stochastic models arising from group representation theory, Stochastic
Processes and their Applications (2017), https://doi.org/10.1016/j.spa.2017.10.017.

M.D. de la Iglesia, P. Román / Stochastic Processes and their Applications ( ) – 17

Then it is easy to see that Qn is a family of matrix-valued orthogonal functions with respect to
W̃ , which is given by

W̃ (y) =
4ν−1(2 + ν)[y(1 − y)]ν−1/2

ν + 1/2

⎛⎝ 1 + ν 0 0
0 ν(1 − 2y)2 0
0 0 1 + ν

⎞⎠ .
Qn can also be divided by blocks

Qn(y) =

⎛⎝ Qn,1(y)
0
0

0 0 qn,2(y)

⎞⎠ , (3.14)

and the norms are given by

∥Q∗

n∥
2
W̃ = T ∥P (ν)

n ∥
2
W (ν) T ∗. (3.15)

Additionally, Qn is eigenfunction of the second-order differential operator

D̃ = y(1 − y)∂2
y+

⎛⎜⎜⎝
(ν + 1/2)(1 − 2y) 0 0

0 (ν + 3/2)(1 − 2y) −
1

1 − 2y
0

0 0 (ν + 1/2)(1 − 2y)

⎞⎟⎟⎠ ∂y

+
1

2y(1 − y)

⎛⎝ −ν(1 − 2y)2 ν(1 − 2y)2 0
1 + ν −(1 + ν) 0

0 0 −ν(1 − 2y)2

⎞⎠ ,
i.e. D̃Qn = QnΛ̃n , where the eigenvalue is Λ̃n = Λ(ν)

n + ν2
+ 2ν − 4 and in this case it is given

by

Λ̃n =

⎛⎝ −1 − n(n + 2ν + 2) 0 0
0 −n(n + 2ν + 2) 0
0 0 −1 − n(n + 2ν + 2)

⎞⎠ , n ≥ 0.

This second-order differential operator can be identified with the infinitesimal operator of a two-
dimensional diffusion process (also known as switching diffusion processes) with state space
[0, 1] × {1, 2, 3}. As before, the division by blocks gives two independent processes. The first
one is a switching diffusion process with state space [0, 1] × {1, 2} with infinitesimal operator
given by

D1 = y(1 − y)∂2
y+

⎛⎝(ν + 1/2)(1 − 2y) 0

0 (ν + 3/2)(1 − 2y) −
1

1 − 2y

⎞⎠ ∂y (3.16)

+
1

2y(1 − y)

(
−ν(1 − 2y)2 ν(1 − 2y)2

1 + ν −(1 + ν)

)
, ν ≥ 0,

with eigenvalue

Λn,1 =

(
−1 − n(n + 2ν + 2) 0

0 −n(n + 2ν + 2)

)
, n ≥ 0, (3.17)

and weight matrix

W1(y) =
4ν−1(2 + ν)[y(1 − y)]ν−1/2

ν + 1/2

(
1 + ν 0

0 ν(1 − 2y)2

)
. (3.18)
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Observe that the independent coefficient of D1 (depending on y) is the matrix of the infinitesimal
operator of a continuous-time birth-and-death process with two states.

The second process is a regular diffusion process with a killing factor, which infinitesimal
operator is given by

D2 = y(1 − y)∂2
y + (ν + 1/2)(1 − 2y)∂y −

ν(1 − 2y)2

2y(1 − y)
, ν ≥ 0, (3.19)

with eigenvalue

λn,2 = −1 − n(n + 2ν + 2), (3.20)

and weight function

w2(y) =
4ν−1(1 + ν)2[y(1 − y)]ν−1/2

ν + 1/2
. (3.21)

Observe that the independent coefficient of D2 (depending on y) is never positive, so it is the
killing factor of a diffusion process.

We can perform again the spectral analysis of these two operators since we have an explicit
expression of the weights, orthogonal functions and norms. Let us study the probabilistic
properties of each one of these diffusion processes.
(1) Let {X t , t ≥ 0} be the diffusion process with killing associated with the infinitesimal operator
(3.19) and call p(t; x, dy) the probability transition distribution of the process if it has not been
killed yet. It is well known that p(t; x, dy) has a density p(t; x, y) and it is given by (see for
instance Section 15.13 of [23])

p(t; x, y) =

∞∑
n=0

eλn,2t qn,2(x)qn,2(y)πnw2(y),

where w2(y) is given by (3.21), the eigenvalue λn,2 is given by (3.20) and πn are the inverse of
the squared norms of the functions qn,2 in (3.14). The family of functions qn,2 can be written in
the following way

qn,2(y) = −
i n!

√
y(1 − y)

2n−2(ν + 1)n
C (ν+1)

n (y),

where C (λ)
n is the family of Gegenbauer polynomials, see [24, (1.8.15)]. The norms with respect

to (3.21) follows from the explicit expression (2.6), (3.13) and (3.15):

π−1
n = ∥q∗

n,2∥
2
w2

=
πn!(n + ν + 1)(ν + 1)2Γ (n + 2ν + 2)

16n4ν(2ν + 1)Γ (n + ν + 2)2 . (3.22)

Therefore p(t; x, y) can be written in the following way

p(t; x, y) = e−t
√

x(1 − x)
4ν+1(1 + ν)2[y(1 − y)]ν

ν + 1/2

×

∞∑
n=0

e−n(n+2ν+2)t (n!)2 πn

4n (ν + 1)2
n

C (ν+1)
n (x)C (ν+1)

n (y)

=
2
π

e−t
√

x(1 − x)42ν+1Γ (ν + 1)2[y(1 − y)]ν

×

∞∑
n=0

e−n(n+2ν+2)t n! 4n(n + ν + 1)
Γ (n + 2ν + 1)

C (ν+1)
n (x)C (ν+1)

n (y).
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Fig. 4. Trajectories of the diffusion with killing with parameters ν = 1/4 (regular boundaries) and ν = 1 (entrance
boundaries) starting at x = 1/2.

It is well known that the killing time ξ is a random variable distributed according the law

P (ξ > t |{Xs, s ≥ 0}) = exp
(

−
ν

2

∫ t

0

(1 − 2Xs)2

Xs(1 − Xs)
ds
)
.

Since we have an explicit expression for the transition probability density, we can approximate
this distribution by doing

P (ξ > t |X0 = x) =

∫ 1

0
p(t; x, y)dy.

We observe that if the process X t is near the state 1/2, then there is a small probability that
the process is being killed. While if X t is near 0 or 1, then there is a very high probability that
the process is being killed in a next time.

This process can be regarded as a Wright–Fisher model involving only mutation effects with
killing. In this case the intensities of mutation are equal and the behavior of the boundary points
can be analyzed in the way it is done in pp. 239 of [23]. Therefore, since ν ≥ 0, 0 (and 1) is a
regular boundary if 0 ≤ ν < 1/2, while it is an entrance boundary if ν ≥ 1/2.1 In Fig. 4 we
can observe this behavior. The picture on the left has ν = 1/4, so the boundaries are regular. But
when the process is close to 0 or 1, then almost immediately the process is killed. This is not the
situation when ν = 1 where we have entrance boundaries. It takes more time for the process to
be killed and the trajectories cannot approach any of the boundary points.
(2) Let {Z t = (X t , Yt ), t ≥ 0} be the switching diffusion process associated with the infinitesimal
operator (3.16). Now the transition probability distribution is a 2 × 2 matrix-valued function
P(t; x, A) = (Pi j (t; x, A)), defined for every t ≥ 0, x ∈ [0, 1] and any real Borel set A of [0, 1],

1 We recall that a boundary is said to be regular if the process can both enter and leave from the boundary, while it is
said to be entrance if the boundary cannot be reached from the interior of the state space, but it is possible to consider
the process beginning there.
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whose (i, j) entry is given by

Pi j (t; x, A) = P (X t ∈ A, Yt = j |X0 = x, Y0 = i) , i, j ∈ {1, 2}.

The density of this matrix-valued distribution (in the sense that 0 ≤ P(t; x, A)e2 ≤ e2, for any
Borel set A) can be described in terms of the matrix-valued orthogonal functions Qn,1(y) in
(3.14) with respect to W1(y) in (3.18) (see (3.8) of [5]). Therefore

P(t; x, y) =

∞∑
n=0

Qn,1(x)ΠneΛn,1t Q∗

n,1(y)W1(y),

where Λn,1, n ≥ 0, are the (diagonal) eigenvalues (3.17) and Π −1
n , n ≥ 0, are the (diagonal)

norms of the matrix-valued functions Qn,1(y), given by

Π −1
n = ∥Q∗

n,1∥
2
W1

= π−1
n

⎛⎝1 0

0
ν(n + ν + 2)

4(ν + 1)(n + ν)

⎞⎠ ,
where π−1

n was given by (3.22). It is possible to write Qn,1(y) in terms of the Gegenbauer
polynomials (see [25, Theorem 3.4]).

The difference of this process with respect to the previous one is that their trajectories can
evolve infinitely in time, while the first one has to stop at some random killing time. There are
two phases in this process. In the first phase the diffusion evolves as a regular diffusion with
infinitesimal operator (see entry (1,1) of D1 in (3.16))

y(1 − y)∂2
y + (ν + 1/2)(1 − 2y)∂y,

while in the second phase the diffusion evolves as a regular diffusion with infinitesimal operator

y(1 − y)∂2
y +

[
(ν + 3/2)(1 − 2y) −

1
1 − 2y

]
∂y .

The description of how the process moves through the two phases is given by the independent
coefficient of D1:

1
2y(1 − y)

(
−ν(1 − 2y)2 ν(1 − 2y)2

1 + ν −(1 + ν)

)
. (3.23)

It is easy to see that the boundaries 0 and 1 behaves exactly in the same way as in the previous
diffusion with killing, i.e. 0 and 1 are regular boundaries if 0 ≤ ν < 1/2, while they are entrance
boundaries if ν ≥ 1/2. Therefore the process is positive recurrent for ν ≥ 1/2. The important
difference now is that in the second phase there is a point in the interior of [0, 1] given by
y = 1/2, where the drift coefficient tends to infinity. Therefore we should analyze the behavior
of the process near this point (and only if the process is at phase 2). Using the same methodology
to study the behavior of boundaries (see pp. 239 of [23]) we conclude that the point 1/2 (both on
the left and on the right) is always an entrance boundary, meaning the process cannot be reached
from the interior of [0, 1/2) or (1/2, 1] (which depends on the position of the particle when the
process starts at phase 2), but it is possible to consider the process beginning at 1/2.

This process can also be regarded as a variant of the Wright–Fisher model involving only
mutation effects with two different phases. The intensities of mutation are equal and the behavior
of the boundaries 0 and 1 in both phases is exactly the same, but, while the process is at phase 2,
starting for instance at an interior point of [0, 1/2), then there is a force blocking the pass through
the threshold located at 1/2 (same if the interior point is located at (1/2, 1]). If the process is at
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Fig. 5. Trajectories of the diffusion with two phases with parameters ν = 1/4 (regular boundaries) and ν = 1 (entrance
boundaries) starting at y = 1/2 and phase 1. Phase 1 acts on the left of the black vertical line, while phase 2 acts on the
left of the red vertical line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

phase 1, it can move along the whole state space [0, 1] without any restriction at the point 1/2.
This behavior can be seen in Fig. 5. While the process is at phase 2 (left of the red vertical line)
the trajectory is never going to cross the 1/2 horizontal line.

Let us study now how the process moves between the two phases. For that we need to study
the matrix (3.23) (which is the infinitesimal operator of a continuous-time Markov chain with
state space {1, 2}). We observe that if the process is near 0 or 1, then the diagonal coefficients
are very large, meaning that all phases are instantaneous, i.e., the waiting times at each phase are
very short until the process is far from the boundaries (see again Fig. 5). We also observe that
if the process is near 1/2 then the entry (1, 1) is very small, meaning that phase 1 is absorbing,
i.e., if the process enters this phase and the position of the particle is close to 1/2, then it tends
to spend long periods of times in that phase (as we can see again in Fig. 5). At the moment of
jumping from one phase to another, the probabilities are given by the law

P(Yt = 1 → Yt = 2) =
ν(1 − 2y)2

ν(1 − 2y)2 + 1 + ν
,

P(Yt = 2 → Yt = 1) =
1 + ν

ν(1 − 2y)2 + 1 + ν
.

A closer look at these probabilities shows that for all values of y ∈ [0, 1] and ν ≥ 0 we have

P(Yt = 1 → Yt = 2) < P(Yt = 2 → Yt = 1),

so that the process tends to stay at phase 1 more time than in phase 2 (a behavior which can be
seen again in Fig. 5).
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Fig. 6. The components of the vector-valued invariant distribution ψ(y) (in blue the first component and in red the
second), for ν = 1/4 and ν = 1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We finally give an explicit expression of the vector-valued (of dimension 2) invariant
distribution ψ(y) given by formula (3.19) of [5], i.e.

ψ(y) =

(∫ 1

0
e∗

2W1(y)e2dy
)−1

e∗

2W1(y), e∗

2 = (1, 1).

Since we have an explicit expression of W1(y) in (3.18), we can compute explicitly ψ(y), given
in this case by

ψ(y) =
4νΓ (ν + 2)[y(1 − y)]ν−1/2

√
π (2 + ν)Γ (ν + 3/2)

(
1 + ν , ν(1 − 2y)2). (3.24)

In Fig. 6 we have plotted both components (blue for the first component and red for the
second) for the especial cases of ν = 1/4 and ν = 1. From these plots we clearly see that, for a
large time, it is more likely that the process will be in phase 1 than in phase 2, as we previously
predicted, especially near the point 1/2, where phase 1 is absorbing.

This vector-valued invariant distribution is valid only when the process is positive recurrent,
i.e. ν ≥ 1/2. For 0 ≤ ν < 1/2, (3.24) is also meaningful, but the boundary points of the process
are now absorbing, meaning that the correct vector-valued invariant distribution of such cases
involves mass jumps at the boundaries 0 and 1 plus a density portion of the form (3.24).

4. The ℓ = 2 case

For the ℓ = 2 case, the matrix Y in (2.17) is given by

Y =
1

√
2

⎛⎜⎜⎜⎜⎝
1 0 0 0 1
0 1 0 1 0
0 0

√
2 0 0

0 −1 0 1 0
−1 0 0 0 1

⎞⎟⎟⎟⎟⎠ .
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The weight matrix W and the matrix-valued orthogonal polynomials can now be divided into
two examples of size 3 × 3 and 2 × 2, respectively. As in the previous case, we can study two
different stochastic models. The first one comes from the coefficients of the three-term recurrence
relations, in which case we will have two continuous-time level-dependent quasi-birth-and-death
processes (with 3 and 2 phases, respectively). These processes are similar to the ones studied in
the previous section, i.e. they are rational variations of one-server queues where the interaction
between them is remarkable in the first states of the queue. So we will not give any details in this
section.

More remarkable is the situation in relation with switching diffusion processes. The conjuga-
tion given by the matrix S(y) in (2.15) (see also (2.12) and (2.13)) is

S(y) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 − 2y 0 0 0

0 0 1 −
8
3

y(1 − y) 0 0

0 0 0 1 − 2y 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .
The transformation matrix T is given as in the ℓ = 1 case in (3.12).

The first process is a switching diffusion process with state space [0, 1] × {1, 2, 3}. The
infinitesimal operator is given by

D1 =y(1 − y)∂2
y

+

⎛⎜⎜⎜⎝
(ν + 1/2)(1 − 2y) 0 0

0 (ν + 3/2)(1 − 2y) −
1

1 − 2y
0

0 0 (ν + 5/2)(1 − 2y) −
6(1 − 2y)

3 − 8y + 8y2

⎞⎟⎟⎟⎠ ∂y

+
1

y(1 − y)

⎛⎜⎜⎜⎜⎝
−ν(1 − 2y)2 ν(1 − 2y)2 0

3 + ν

4
3 + ν + (1 + ν)(3 − 8y + 8y2)

4
(1 + ν)(3 − 8y + 8y2)

4

0
3(1 − 2y)2

3 − 8y + 8y2 −
3(1 − 2y)2

3 − 8y + 8y2

⎞⎟⎟⎟⎟⎠ ,
with eigenvalue

Λn,1 =

⎛⎝−4 − n(n + 2ν + 4) 0 0
0 −1 − n(n + 2ν + 4) 0
0 0 −n(n + 2ν + 4)

⎞⎠ , n ≥ 0,

and weight matrix

W1(y) =
4ν−2(ν + 4)[y(1 − y)]ν−1/2

(ν + 1/2)2

×

⎛⎜⎜⎝
(ν + 2)2 0 0

0 4ν(ν + 2)(1 − 2y)2 0

0 0
ν(ν + 1)(3 − 8y + 8y2)2

3

⎞⎟⎟⎠ .
Observe that the term 3 − 8y + 8y2 is always positive for any y. This process may be viewed
as an extension of the example studied in Section 3.2 (2), but with three different phases. The
probabilistic interpretation is very similar and we can study without too much difference the
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behavior at the boundaries points (including the behavior at the point y = 1/2 in phase 2), how
the process moves between phases and the invariant distribution.

For the second process we have a new phenomenon. We have a switching diffusion process
with killing with state space [0, 1] × {1, 2}. The infinitesimal operator is given by

D2 = y(1 − y)∂2
y+

⎛⎝(ν + 3/2)(1 − 2y) −
1

1 − 2y
0

0 (ν + 1/2)(1 − 2y)

⎞⎠ ∂y

+
1

y(1 − y)

⎛⎝−
ν + 3

4
−

(ν + 1)(3 − 8y + 8y2)
4

ν + 3
4

ν(1 − 2y)2
−ν(1 − 2y)2

⎞⎠ ,
with eigenvalue

Λn,2 =

(
−1 − n(n + 2ν + 4) 0

0 −4 − n(n + 2ν + 4)

)
, n ≥ 0,

and weight matrix

W2(y) =
4ν−2(ν + 2)(ν + 4)[y(1 − y)]ν−1/2

(ν + 1/2)2

(
4ν(1 − 2y)2 0

0 ν + 3

)
.

The difference of this process with respect to the previous one is that in the first phase the
process can be stopped at some random killing time, so the diffusion runs according to the
infinitesimal operator

y(1 − y)∂2
y +

[
(ν + 3/2)(1 − 2y) −

1
1 − 2y

]
∂y −

(ν + 1)(3 − 8y + 8y2)
4

. (4.1)

The second phase runs as a regular diffusion with infinitesimal operator

y(1 − y)∂2
y + (ν + 1/2)(1 − 2y)∂y .

The description of how the process moves through the two phases is given by

1
y(1 − y)

⎛⎝ −
ν + 3

4
ν + 3

4
ν(1 − 2y)2

−ν(1 − 2y)2

⎞⎠ .
This process can be regarded as a variant of the Wright–Fisher model involving only mutation

effects with two different phases, one of them with a killing factor. The behavior of the
boundaries 0 and 1 in both phases is exactly the same, but, while the process is at phase 1, starting
for instance at an interior point of [0, 1/2), then there is a force blocking the pass through the
threshold located at 1/2 (same if the interior point is located at (1/2, 1]). Also in this phase the
process may terminate according to the killing coefficient given in (4.1) (see second picture of
Fig. 7). If the process is at phase 2, it can move along the whole state space [0, 1] without any
restriction at the point 1/2 or being killed (see again Fig. 7). As far as the authors know this is the
first example of this kind that can be studied explicitly using spectral analysis of the infinitesimal
operator.
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