143 research outputs found

    The Resolution of Periodontal Inflammation Promotes Changes in Cytokine Expression in the Intestine and Gingival Tissues of Aged Rats with DSS-Induced Colitis

    Get PDF
    Our research aimed to explore how resolving periodontal inflammation impacts cytokine expression in the colons of aged Wistar rats. Research studies involving animals have been conducted to investigate the two-way relationship between periodontitis and inflammatory bowel disease (IBD), where chronic inflammation in either the mouth or intestines can negatively affect the other. We allocated seventeen male Wistar rats aged between 8 and 11 months to one of four groups: (1) ligature-induced periodontitis (LIP) without the resolution of periodontal inflammation (RPI) (LIP; n = 4), (2) LIP + RPI (n = 4), (3) LIP + dextran-sulphate-sodium-induced colitis (DIC) without RPI (n = 4), and LIP + DIC + RPI (n = 5). We performed histopathological and immunological analyses on periodontal and intestinal tissues and analysed cytokine expressions using a Rat Cytokine 23-Plex Immunoassay. Our findings showed that animals with and without DIC who underwent RPI showed significantly lower levels of IL-2, IL-4, IL-5, IL-10, IL-13, IL-17, IL-18, and TNF-α in the intestine compared to those without treatment. The RPI effectively reduced the number of inflammatory cells in the lamina propria and restored the epithelial barrier in the intestine in animals with DIC. The resolution of periodontal inflammation significantly reduced the levels of pro-inflammatory cytokines and chemokines in the intestines of aged rats with and without DSS-induced colitis

    Guidelines for the management of neuroendocrine tumours by the Brazilian gastrointestinal tumour group

    Get PDF
    Neuroendocrine tumours are a heterogeneous group of diseases with a significant variety of diagnostic tests and treatment modalities. Guidelines were developed by North American and European groups to recommend their best management. However, local particularities and relativisms found worldwide led us to create Brazilian guidelines. Our consensus considered the best feasible strategies in an environment involving more limited resources. We believe that our recommendations may be extended to other countries with similar economic standards.Univ Sao Paulo, Inst Canc Estado Sao Paulo, BR-01246000 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Radiol & Oncol, BR-01246903 Sao Paulo, BrazilHosp Sirio Libanes, BR-01308050 Sao Paulo, BrazilHosp Moinhos de Vento Porto Alegre, BR-90035000 Porto Alegre, RS, BrazilOncoctr, BR-30360680 Belo Horizonte, MG, BrazilUniv Fed Rio Grande do Sul, Dept Cirurgia, BR-90040060 Porto Alegre, RS, BrazilHosp Clin Porto Alegre, BR-90035903 Porto Alegre, RS, BrazilUniv Fed Ceara, Fac Med, Dept Fisiol & Farmacol, BR-60020180 Fortaleza, Ceara, BrazilHosp Univ Walter Cantidio, BR-60430370 Fortaleza, Ceara, BrazilInst Nacl Canc, BR-20230240 Rio De Janeiro, BrazilUniv Sao Paulo, Fac Med, Disciplina Endocrinol & Metabol, BR-01246903 Sao Paulo, BrazilAC Camargo Canc Ctr, Dept Surg, BR-01509010 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Gastroenterol, Sao Paulo, BrazilUniv Fed Ciencias Saude Porto Alegre, BR-90050170 Porto Alegre, RS, BrazilHosp Albert Einstein, BR-05652900 Sao Paulo, BrazilHosp Base, Fac Med Sao Jose do Rio Preto, BR-15090000 Sao Paulo, BrazilSanta Casa Sao Jose do Rio Preto, BR-15025500 Sao Jose Do Rio Preto, BrazilPontificia Univ Catolica Parana, Hosp Erasto Gaertner, BR-81520060 Curitiba, Parana, BrazilUniv Fed Rio Grande do Norte, BR-59300000 Natal, RN, BrazilUniv Sao Paulo, Inst Coracao, BR-05403900 Sao Paulo, BrazilAC Camargo Canc Ctr, Med Oncol, BR-01509010 Sao Paulo, BrazilUniv Fed Sao Paulo, Disciplina Gastroenterol, BR-04021001 Sao Paulo, BrazilHosp Sao Rafael, BR-41253190 Salvador, BA, BrazilHosp Canc Barretos, Dept Cirurgia Aparelho Digest Alto & Hepatobiliop, BR-14784400 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Patol, BR-01246903 Sao Paulo, BrazilClin AMO, BR-1950640 Salvador, BA, BrazilHosp Sao Jose, BR-01323001 Sao Paulo, BrazilUniv Nove de Julho, BR-02111030 Sao Paulo, BrazilUniv Fed Sao Paulo, Disciplina Gastroenterol, BR-04021001 Sao Paulo, BrazilWeb of Scienc

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data
    corecore