26 research outputs found

    Etude de la perméabilisation de la membrane plasmique et des membranes des organites cellulaires par des agents chimiques et physiques

    Get PDF
    It is possible to permeabilize the cellular plasma membrane by using chemical agents (as polyethylen glycols or dimĂ©thylsulfoxyde) or physical agents (as ulstrasounds or electric pulses). This permeabilization can be reversible or not, meaning that after the permeabilization, the membrane recovers its integrity and its hemi-permeable properties. These techniques can be used for the uptake of medicines or nucleic acids or to generate cellular fusions. A recent approach, the molecular dynamics, uses numerical simulations to predict the effects of permeabilizing agents at the molecular scale, allowed generating of new data to understand the molecular mechanisms that are not completely known yet.The pulses so called “classical” in electropermeabilization, from the range of the ten of milliseconds to the hundred of microseconds and with a field amplitude in the range of 100 kV/m, can only permeabilize the plasma membrane. However, more recently, shorter pulses, so called nanopulses (few nanosecondes) and with an higher field amplitude (in the range of 10 MV/m) have been used and allow to affect also cellular organelles membranes.This thesis is, in a first time, about the permeabilizing effects of a chemical gent (the dimĂ©thylsulfoxyde, DMSO) by comparing predictive models from molecular dynamics with experiments in vitro on cells. The numerical model predicts three regimes of action depending on the DMSO concentration. Used at low concentration, there is a plasma membrane deformation. The use of an intermediate concentration lead to membrane pores formation and higher DMSO concentrations resulted in membrane destruction. The experiments done in vitro on cells confirmed these results using the following of permeabilization markers. This study has been compared to permeabilization due to a physical agent (electric pulses).Secondly, it is about the development and the use of a new cell exposure device for nanopulses that permit to apply very high electric fields and to observe induced cellular effects simultaneously by microscopy.To finish, this device has been used with nanopulses to generate calcium peaks in mesenchymal stem cells that are presenting spontaneous calcium oscillations in correlation to their differentiation state.. These induced peaks are due to the release of the calcium stored in organelles and/or to plasma membrane permeabilization leading to a intramembrane calcium flux establishment. It is also possible to use microsecond pulses to generate calcium peaks in these cells. In this case, the calcium peaks are due to the plasma membrane permeabilization . By changing the amplitude of the applied electric fields and the presence or the absence of external calcium, it is possible to manipulate cytosolic calcium concentrations by mobilizing internal or external calcium. One feature of these new tools is to be triggered and stopped instantly without reminiscence, unlike chemical molecules permitting the production of calcium peaks. These tools could therefore lead to a better understanding of the involvement of calcium in mechanisms such as differentiation, migration or fertilization.Il est possible de permĂ©abiliser la membrane plasmique des cellules par des agents chimiques (tels que les polyĂ©thylĂšnes glycols ou le dimĂ©thylsulfoxyde) ou par des agents physiques (tels que les ultrasons ou les impulsions Ă©lectriques). Cette permĂ©abilisation peut ĂȘtre rĂ©versible ou non, ce qui signifie qu’aprĂšs la permĂ©abilisation, la membrane retrouve son intĂ©gritĂ© et ses propriĂ©tĂ©s d’hĂ©mi-permĂ©abilitĂ© ou pas. Ces techniques peuvent ĂȘtre utilisĂ©es pour faire rentrer des mĂ©dicaments ou des acides nuclĂ©iques dans les cellules ou pour gĂ©nĂ©rer des fusions cellulaires. Une approche rĂ©cente, la dynamique molĂ©culaire, utilise des simulations numĂ©riques pour prĂ©dire les effets des agents permĂ©abilisants sur les membranes Ă  l’échelle molĂ©culaire, et permet d’apporter de nouvelles donnĂ©es pour comprendre les mĂ©canismes molĂ©culaires, encore peu connus Ă  ce jour.Les impulsions dites « classiques » en Ă©lectropermĂ©abilisation, de l’ordre de la dizaine de millisecondes Ă  la centaine de microsecondes et d’amplitude de champ de l’ordre de 100 kV/m, permĂ©abilisent la membrane plasmique uniquement. Cependant, rĂ©cemment, des impulsions plus courtes, dites impulsions nanoseconde (quelques nanosecondes) et de plus grande amplitude de champ (de l’ordre de 10 MV/m) ont Ă©tĂ© utilisĂ©es et permettent d’affecter Ă©galement les membranes des organites cellulaires. Les travaux de cette thĂšse portent dans un premier temps sur les effets permĂ©abilisants d’un agent chimique (le dimĂ©thylsulfoxyde, DMSO) en comparant les modĂšles prĂ©dictifs de la dynamique molĂ©culaire avec des expĂ©riences in vitro sur des cellules. Le modĂšle numĂ©rique prĂ©dit trois rĂ©gimes d’action en fonction de la concentration du DMSO. UtilisĂ© Ă  faible concentration, il y a dĂ©formation de la membrane plasmique. L’utilisation d’une concentration intermĂ©diaire entraĂźne la formation de pores membranaires et les fortes concentrations de DMSO ont pour consĂ©quence la destruction de la membrane. Les expĂ©riences in vitro faites sur des cellules ont confirmĂ© ces rĂ©sultats en suivant l’entrĂ©e de marqueurs de permĂ©abilisation. Cette Ă©tude a Ă©tĂ© comparĂ©e avec la permĂ©abilisation par un agent physique (les impulsions Ă©lectriques). Dans un deuxiĂšme temps, ces travaux traitent du dĂ©veloppement et de l’utilisation d’un nouveau dispositif d’exposition des cellules aux impulsions nanoseconde qui permet d’appliquer des champs Ă©lectriques trĂšs Ă©levĂ©s et d’observer par microscopie leurs au niveau cellulaire. Pour finir, ce dispositif a Ă©tĂ© utilisĂ© avec des impulsions nanoseconde pour gĂ©nĂ©rer des pics calciques dans de cellules souches mĂ©senchymateuses qui prĂ©sentent des oscillations calciques spontanĂ©es liĂ©es Ă  leur Ă©tat de diffĂ©renciation. Ces pics induits sont dus Ă  la libĂ©ration de calcium stockĂ© dans les organites et/ou Ă  la permĂ©abilisation de la membrane plasmique permettant l’établissement d’un flux de calcium intramembranaire. Il est aussi possible d’utiliser des impulsions microseconde pour gĂ©nĂ©rer des pics calciques dans ces cellules. Dans ce cas, les pics calciques ne sont dus qu’à la permĂ©abilisation de la membrane plasmique. En jouant sur l’amplitude des champs Ă©lectriques appliquĂ©s et sur la prĂ©sence ou l’absence de calcium externe, il est possible de manipuler les concentrations calciques cytosoliques en mobilisant le calcium interne ou externe. Une des particularitĂ©s de ces nouveaux outils est de pouvoir ĂȘtre dĂ©clenchĂ©s et arrĂȘtĂ©s instantanĂ©ment, sans rĂ©miniscence, contrairement aux molĂ©cules chimiques permettant de produire des pics calciques. Ces outils pourraient donc permettre de mieux comprendre l’implication du calcium dans des mĂ©canismes comme la diffĂ©renciation, la migration ou la fĂ©condation

    Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: A comparative study of experiments in silico and with cells

    Get PDF
    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.Fil: de Ménorval, Marie-Amélie. Centre National de la Recherche Scientifique; FranciaFil: Mir, Lluis M.. Centre National de la Recherche Scientifique; FranciaFil: Fernåndez, María Laura. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Reigada, Ramon. Universidad de Barcelona; Españ

    Study of plasma membrane and organelles membranes permeabilization by chemical and physical agents

    No full text
    Il est possible de permĂ©abiliser la membrane plasmique des cellules par des agents chimiques (tels que les polyĂ©thylĂšnes glycols ou le dimĂ©thylsulfoxyde) ou par des agents physiques (tels que les ultrasons ou les impulsions Ă©lectriques). Cette permĂ©abilisation peut ĂȘtre rĂ©versible ou non, ce qui signifie qu’aprĂšs la permĂ©abilisation, la membrane retrouve son intĂ©gritĂ© et ses propriĂ©tĂ©s d’hĂ©mi-permĂ©abilitĂ© ou pas. Ces techniques peuvent ĂȘtre utilisĂ©es pour faire rentrer des mĂ©dicaments ou des acides nuclĂ©iques dans les cellules ou pour gĂ©nĂ©rer des fusions cellulaires. Une approche rĂ©cente, la dynamique molĂ©culaire, utilise des simulations numĂ©riques pour prĂ©dire les effets des agents permĂ©abilisants sur les membranes Ă  l’échelle molĂ©culaire, et permet d’apporter de nouvelles donnĂ©es pour comprendre les mĂ©canismes molĂ©culaires, encore peu connus Ă  ce jour.Les impulsions dites « classiques » en Ă©lectropermĂ©abilisation, de l’ordre de la dizaine de millisecondes Ă  la centaine de microsecondes et d’amplitude de champ de l’ordre de 100 kV/m, permĂ©abilisent la membrane plasmique uniquement. Cependant, rĂ©cemment, des impulsions plus courtes, dites impulsions nanoseconde (quelques nanosecondes) et de plus grande amplitude de champ (de l’ordre de 10 MV/m) ont Ă©tĂ© utilisĂ©es et permettent d’affecter Ă©galement les membranes des organites cellulaires. Les travaux de cette thĂšse portent dans un premier temps sur les effets permĂ©abilisants d’un agent chimique (le dimĂ©thylsulfoxyde, DMSO) en comparant les modĂšles prĂ©dictifs de la dynamique molĂ©culaire avec des expĂ©riences in vitro sur des cellules. Le modĂšle numĂ©rique prĂ©dit trois rĂ©gimes d’action en fonction de la concentration du DMSO. UtilisĂ© Ă  faible concentration, il y a dĂ©formation de la membrane plasmique. L’utilisation d’une concentration intermĂ©diaire entraĂźne la formation de pores membranaires et les fortes concentrations de DMSO ont pour consĂ©quence la destruction de la membrane. Les expĂ©riences in vitro faites sur des cellules ont confirmĂ© ces rĂ©sultats en suivant l’entrĂ©e de marqueurs de permĂ©abilisation. Cette Ă©tude a Ă©tĂ© comparĂ©e avec la permĂ©abilisation par un agent physique (les impulsions Ă©lectriques). Dans un deuxiĂšme temps, ces travaux traitent du dĂ©veloppement et de l’utilisation d’un nouveau dispositif d’exposition des cellules aux impulsions nanoseconde qui permet d’appliquer des champs Ă©lectriques trĂšs Ă©levĂ©s et d’observer par microscopie leurs au niveau cellulaire. Pour finir, ce dispositif a Ă©tĂ© utilisĂ© avec des impulsions nanoseconde pour gĂ©nĂ©rer des pics calciques dans de cellules souches mĂ©senchymateuses qui prĂ©sentent des oscillations calciques spontanĂ©es liĂ©es Ă  leur Ă©tat de diffĂ©renciation. Ces pics induits sont dus Ă  la libĂ©ration de calcium stockĂ© dans les organites et/ou Ă  la permĂ©abilisation de la membrane plasmique permettant l’établissement d’un flux de calcium intramembranaire. Il est aussi possible d’utiliser des impulsions microseconde pour gĂ©nĂ©rer des pics calciques dans ces cellules. Dans ce cas, les pics calciques ne sont dus qu’à la permĂ©abilisation de la membrane plasmique. En jouant sur l’amplitude des champs Ă©lectriques appliquĂ©s et sur la prĂ©sence ou l’absence de calcium externe, il est possible de manipuler les concentrations calciques cytosoliques en mobilisant le calcium interne ou externe. Une des particularitĂ©s de ces nouveaux outils est de pouvoir ĂȘtre dĂ©clenchĂ©s et arrĂȘtĂ©s instantanĂ©ment, sans rĂ©miniscence, contrairement aux molĂ©cules chimiques permettant de produire des pics calciques. Ces outils pourraient donc permettre de mieux comprendre l’implication du calcium dans des mĂ©canismes comme la diffĂ©renciation, la migration ou la fĂ©condation.It is possible to permeabilize the cellular plasma membrane by using chemical agents (as polyethylen glycols or dimĂ©thylsulfoxyde) or physical agents (as ulstrasounds or electric pulses). This permeabilization can be reversible or not, meaning that after the permeabilization, the membrane recovers its integrity and its hemi-permeable properties. These techniques can be used for the uptake of medicines or nucleic acids or to generate cellular fusions. A recent approach, the molecular dynamics, uses numerical simulations to predict the effects of permeabilizing agents at the molecular scale, allowed generating of new data to understand the molecular mechanisms that are not completely known yet.The pulses so called “classical” in electropermeabilization, from the range of the ten of milliseconds to the hundred of microseconds and with a field amplitude in the range of 100 kV/m, can only permeabilize the plasma membrane. However, more recently, shorter pulses, so called nanopulses (few nanosecondes) and with an higher field amplitude (in the range of 10 MV/m) have been used and allow to affect also cellular organelles membranes.This thesis is, in a first time, about the permeabilizing effects of a chemical gent (the dimĂ©thylsulfoxyde, DMSO) by comparing predictive models from molecular dynamics with experiments in vitro on cells. The numerical model predicts three regimes of action depending on the DMSO concentration. Used at low concentration, there is a plasma membrane deformation. The use of an intermediate concentration lead to membrane pores formation and higher DMSO concentrations resulted in membrane destruction. The experiments done in vitro on cells confirmed these results using the following of permeabilization markers. This study has been compared to permeabilization due to a physical agent (electric pulses).Secondly, it is about the development and the use of a new cell exposure device for nanopulses that permit to apply very high electric fields and to observe induced cellular effects simultaneously by microscopy.To finish, this device has been used with nanopulses to generate calcium peaks in mesenchymal stem cells that are presenting spontaneous calcium oscillations in correlation to their differentiation state.. These induced peaks are due to the release of the calcium stored in organelles and/or to plasma membrane permeabilization leading to a intramembrane calcium flux establishment. It is also possible to use microsecond pulses to generate calcium peaks in these cells. In this case, the calcium peaks are due to the plasma membrane permeabilization . By changing the amplitude of the applied electric fields and the presence or the absence of external calcium, it is possible to manipulate cytosolic calcium concentrations by mobilizing internal or external calcium. One feature of these new tools is to be triggered and stopped instantly without reminiscence, unlike chemical molecules permitting the production of calcium peaks. These tools could therefore lead to a better understanding of the involvement of calcium in mechanisms such as differentiation, migration or fertilization

    Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments <em>In Silico</em> and with Cells

    Get PDF
    <div><p>Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca<sup>2+</sup>) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.</p> </div

    Evolution of diameters of DC-3F cells.

    No full text
    <p>Values taken during 30 min (from 3 to 33 min) in the presence of 10 vol% (A) and 20 vol% (B) of DMSO. The cells are incubated with complete MEM and DMSO.</p

    Fluctuations and transient water pores.

    No full text
    <p>Snapshots in the (x,z) view for the dynamics of a DOPC/20%Chol bilayer with 10 mol% DMSO. The first two snapshots illustrate the existence of water fluctuations that promote the presence of single (a) or groups (b) of a few water molecules in the hydrophobic region of the membrane. (c–f) Sequence of the formation and collapse of a transient water pore. Water molecules are plotted with red and white sticks whereas red, blue and green sticks are used for DMSO molecules. DOPC and Chol molecules are not plotted except for their phosphate (yellow beads) and hydroxyl (red beads) groups, respectively.</p

    DMSO stabilizes water fluctuations and pores.

    No full text
    <p>Snapshots in the (x,z) view for system slices with thickness 0.4 nm in the ‘y’ coordinate. Water molecules are plotted with red and white sticks, whereas beads are used for DMSO molecules. For clarity, lipids are not plotted. (a) Detail of the initial water fluctuation in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041733#pone-0041733-g001" target="_blank">Figure 1c</a>. (b) Detail of the water column in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041733#pone-0041733-g001" target="_blank">Figure 1e</a>. (c) Detail of the stable pore in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041733#pone-0041733-g001" target="_blank">Figure 1e</a>.</p

    Kinetics of the Ca<sup>2+</sup> uptake by DC-3F cells in the presence of different concentrations of DMSO (From 0 vol% to 40 vol%).

    No full text
    <p>DMSO was diluted in complete MEM. Data collected by flow cytometry. Error bars correspond to standard deviations calculated from three independent experiments.</p

    Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses

    No full text
    Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic cells with the ability to differentiate into various specific cell types, thus holding great promise for regenerative medicine. Early clinical trials have proven that MSC-based therapy is safe, with possible efficacy in various diseased states. Moreover, genetic modification of MSCs to improve their function can be safely achieved using electrogene transfer. We previously achieved transfection efficiencies of up to 32% with preserved viability in rat MSCs. In this study, we further improved the transfection efficiency and transgene expression in human MSCs (hMSCs), while preserving the cells viability and ability to differentiate into osteoblasts and adipocytes by increasing the plasmid concentration and altering the osmotic pressure of the electrotransfer buffer. Using a square-wave electric pulse generator, we achieved a transfection efficiency of more than 80%, with around 70% viability and a detectable transgene expression of up to 30 days. Moreover, we demonstrated that this transfection efficiency can be reproduced reliably on two different sources of hMSCs: the bone marrow and adipose tissue. We also showed that there was no significant donor variability in terms of their transfection efficiency and viability. The cell confluency before electrotransfer had no significant effect on the transfection efficiency and viability. Cryopreservation of transfected cells maintained their transgene expression and viability upon thawing. In summary, we are reporting a robust, safe, and efficient protocol of electrotransfer for hMSCs with several practical suggestions for an optimal use of genetically engineered hMSCs for clinical application
    corecore