457 research outputs found

    Nuevas orientaciones clinicopatogénicas en la impotencia sexual del hombre

    Get PDF

    New method for detecting & measuring cracks on concrete using fiber optic sensors

    Get PDF
    Advances in the production of optical fibers have made possible the recent development of innovative sensing systems for health monitoring of civil structures. The main reasons for this development are the reduced weight and dimensions of fiber optic sensors, the strong immunity to electromagnetic interference, the improved environmental resistance and the scale flexibility for small-gage and long-gage measurement. This paper provides an overview of the challenges in developing a new fiber optic sensor that can be employed to monitor flexural and tensile cracks on RC structures. The methodology in detecting and localizing the formation of flexural cracks in various locations and sensor’s capability in measuring a range of crack widths is demonstrated through testing of instrumented RC beams subjected to sustained and repeated loading.Fundação para a Ciência e a Tecnologia (FCT

    IAA : Información y actualidad astronómica (15)

    Get PDF
    Sumario : INVESTIGACIÓN. Aerosoles atmosféricos: sus efectos en el clima de las atmósferas del sistema solar.-- El gas molecular en las galaxias.-- VENTANA ABIERTA. Todo un privilegio.-- CHARLAS CON...Vicent Martínez.-- ACTUALIDAD CIENTÍFICA. Un sistema planetario joven en torno a Beta Pictores.-- Una nueva visita a Canis Major .-- ACTIVIDADES IAA.-- AGENDA.Esta revista se publica con la ayuda de la Accion Especial DIF 2001-4284-E del Programa Nacional de Difusión de la Ciencia y la Tecnología, del Ministerio de Ciencia y Tecnología.N

    Evaluation of Analysis Methods for Formaldehyde, Acetaldehyde, and Furfural from Fast Pyrolysis Bio-oil

    Get PDF
    Fast pyrolysis bio-oil (FPBO), a second-generation liquid bioenergy carrier, is currently entering the market. FPBO is produced from biomass through the fast pyrolysis process and contains a large number of constituents, of which a significant part is still unknown. Various analytical methods have been systematically developed and validated for FPBO in the past; however, reliable methods for characterization of acetaldehyde, formaldehyde, and furfural are still lacking. In this work, different analysis methods with (HS-GC/ECD, HPLC, UV/Vis) and without derivatization (GC/MSD, HPLC) for the characterization of these components were evaluated. Five FPBO samples were used, covering a range of biomass materials (pine wood, miscanthus, and bark), storage conditions (freezer and room temperature), and after treatments (none, filtration, and vacuum evaporation). There was no difference among the methods for the acetaldehyde analysis. A significant difference among the methods for the determination of formaldehyde and furfural was observed. Thus, more data on the accuracy of the methods are required. The precision of all methods was below 10% with the exception of the HPLC analysis of acetaldehyde with an RSD of 14%. The concentration of acetaldehyde in the FPBO produced from the three different biomasses and stored in a freezer after production ranged from 0.24 to 0.60 wt %. Storage at room temperature and vacuum evaporation both decreased significantly the acetaldehyde concentration. Furfural concentrations ranged from 0.11 to 0.36 wt % for the five samples. Storage and after treatment affected the furfural concentration but to a lesser extent than for acetaldehyde. Storage at room temperature decreased formaldehyde similarly to acetaldehyde; however, after vacuum-evaporation the concentration of formaldehyde did not change. Thus, the analysis results indicated that in FPBO the equilibrium of formaldehyde and methylene glycol is almost completely on the methylene glycol side, as in aqueous solutions. All three methods employed here actually measure the sum of free formaldehyde and methylene glycol (FAMG)

    Interconnectivity between volume transports through Arctic straits

    Get PDF
    Arctic heat and freshwater budgets are highly sensitive to volume transports through the Arctic‐Subarctic straits. Here we study the interconnectivity of volume transports through Arctic straits in three models; two coupled global climate models, one with a third‐degree horizontal ocean resolution (HiGEM1.1) and one with a twelfth‐degree horizontal ocean resolution (HadGEM3), and one ocean‐only model with an idealized polar basin (tenth‐degree horizontal resolution). The two global climate models indicate that there is a strong anti‐correlation between the Bering Strait throughflow and the transport through the Nordic Seas, a second strong anti‐correlation between the transport through the Canadian Artic Archipelago (CAA) and the Nordic Seas transport, and a third strong anti‐correlation is found between the Fram Strait and the Barents Sea throughflows. We find that part of the strait correlations is due to the strait transports being coincidentally driven by large‐scale atmospheric forcing patterns. However, there is also a role for fast wave adjustments of some straits flows to perturbations in other straits since atmospheric forcing of individual strait flows alone cannot lead to near mass balance fortuitously every year. Idealized experiments with an ocean model (NEMO3.6) that investigate such causal strait relations suggest that perturbations in the Bering Strait are compensated preferentially in the Fram Strait due to the narrowness of the western Arctic shelf and the deeper depth of the Fram Strait

    The initial mass function of early-type galaxies

    Get PDF
    We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos, a combination of lensing, dynamical, and stellar population synthesis models is used to disentangle the stellar and dark matter contribution for each lens. We define an "IMF mismatch" parameter \alpha=M*(L+D)/M*(SPS) as the ratio of stellar mass inferred by a joint lensing and dynamical models (M*(L+D)) to the current stellar mass inferred from stellar populations synthesis models (M*(SPS)). We find that a Salpeter IMF provides stellar masses in agreement with those inferred by lensing and dynamical models (=0.00+-0.03+-0.02), while a Chabrier IMF underestimates them (=0.25+-0.03+-0.02). A tentative trend is found, in the sense that \alpha appears to increase with galaxy velocity dispersion. Taken at face value, this result would imply a non universal IMF, perhaps dependent on metallicity, age, or abundance ratios of the stellar populations. Alternatively, the observed trend may imply non-universal dark matter halos with inner density slope increasing with velocity dispersion. While the degeneracy between the two interpretations cannot be broken without additional information, the data imply that massive early-type galaxies cannot have both a universal IMF and universal dark matter halos.Comment: 10 pages 4 figures. Resubmitted to ApJ taking into account referee's comment

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure
    corecore