538 research outputs found

    Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro

    Get PDF
    BACKGROUND: The composition of plaque is a major determinant of coronary-related clinical syndromes. Intravascular ultrasound (IVUS) elastography has proven to be a technique capable of reflecting the mechanical properties of phantom material and the femoral arterial wall. The aim of this study was to investigate the capability of intravascular elastography to characterize different plaque components. METHODS AND RESULTS: Diseased human femoral (n=9) and coronary (n=4) arteries were studied in vitro. At each location (n=45), 2 IVUS images were acquired at different intraluminal pressures (80 and 100 mm Hg). With the use of cross-correlation analysis on the high-frequency (radiofrequency) ultrasound signal, the local strain in the tissue was determined. The strain was color-coded and plotted as an additional image to the IVUS echogram. The visualized segments were stained on the presence of collagen, smooth muscle cells, and macrophages. Matching of elastographic data and histology were performed with the use of the IVUS echogram. The cross sections were segmented in regions (n=125) that were based on the strain value on the elastogram. The dominant plaque types in these regions (fibrous, fibro-fatty, or fatty) were obtained from histology and correlated with the average strain and echo intensity. The strain for the 3 plaque types as determined by histology differed significantly (P=0.0002). This difference was mainly evident between fibrous and fatty tissue (P=0.0004). The plaque types did not reveal echo-intensity differences in the IVUS echogram (P=0.882). CONCLUSIONS: Different strain values are found between fibrous, fibro-fatty, and fatty plaque components, indicating the potential of intravascular elastography to distinguish different plaque morphologies

    Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model

    Get PDF
    We have developed a new biodegradable scaffold that does not require any cell seeding to create an in-situ tissue-engineering vasculature (iTEV). Animal experiments were conducted to test its characteristics and long-term efficacy. An 8-mm tubular biodegradable scaffold, consisting of polyglycolide knitted fibers and an L-lactide and ε-caprolactone copolymer sponge with outer glycolide and ε-caprolactone copolymer monofilament reinforcement, was implanted into the inferior vena cava (IVC) of 13 canines. All the animals remained alive without any major complications until euthanasia. The utility of the iTEV was evaluated from 1 to 24 months postoperatively. The elastic modulus of the iTEV determined by an intravascular ultrasound imaging system was about 90% of the native IVC after 1 month. Angiography of the iTEV after 2 years showed a well-formed vasculature without marked stenosis or thrombosis with a mean pressure gradient of 0.51±0.19 mmHg. The length of the iTEV at 2 years had increased by 0.48±0.15 cm compared with the length of the original scaffold (2–3 cm). Histological examinations revealed a well-formed vessel-like vasculature without calcification. Biochemical analyses showed no significant differences in the hydroxyproline, elastin, and calcium contents compared with the native IVC. We concluded that the findings shown above provide direct evidence that the new scaffold can be useful for cell-free tissue-engineering of vasculature. The long-term results revealed that the iTEV was of good quality and had adapted its shape to the needs of the living body. Therefore, this scaffold would be applicable for pediatric cardiovascular surgery involving biocompatible materials

    Driving pressure during general anesthesia for open abdominal surgery (DESIGNATION) : study protocol of a randomized clinical trial

    Get PDF
    Background Intraoperative driving pressure (Delta P) is associated with development of postoperative pulmonary complications (PPC). When tidal volume (V-T) is kept constant, Delta P may change according to positive end-expiratory pressure (PEEP)-induced changes in lung aeration. Delta P may decrease if PEEP leads to a recruitment of collapsed lung tissue but will increase if PEEP mainly causes pulmonary overdistension. This study tests the hypothesis that individualized high PEEP, when compared to fixed low PEEP, protects against PPC in patients undergoing open abdominal surgery. Methods The "Driving prESsure durIng GeNeral AnesThesIa for Open abdomiNal surgery trial" (DESIGNATION) is an international, multicenter, two-group, double-blind randomized clinical superiority trial. A total of 1468 patients will be randomly assigned to one of the two intraoperative ventilation strategies. Investigators screen patients aged >= 18 years and with a body mass index <= 40 kg/m(2), scheduled for open abdominal surgery and at risk for PPC. Patients either receive an intraoperative ventilation strategy with individualized high PEEP with recruitment maneuvers (RM) ("individualized high PEEP") or one in which PEEP of 5 cm H2O without RM is used ("low PEEP"). In the "individualized high PEEP" group, PEEP is set at the level at which Delta P is lowest. In both groups of the trial, V-T is kept at 8 mL/kg predicted body weight. The primary endpoint is the occurrence of PPC, recorded as a collapsed composite of adverse pulmonary events. Discussion DESIGNATION will be the first randomized clinical trial that is adequately powered to compare the effects of individualized high PEEP with RM versus fixed low PEEP without RM on the occurrence of PPC after open abdominal surgery. The results of DESIGNATION will support anesthesiologists in their decisions regarding PEEP settings during open abdominal surgery

    Surface plasmon modes of a single silver nanorod: an electron energy loss study

    Get PDF
    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima vary along the nanorod's length and whose wavelength becomes compressed towards the ends of the nanorod. Theoretical calculations modelling the surface plasmon response of the silver nanorod-silicon nitride system show the importance of including retardation and substrate effects in order to describe accurately the energy dispersion of the resonant modes.Comment: 9 pages, 6 figure

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure

    Blinded, multi-centre evaluation of drug-induced changes in contractility using human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Animal models are 78% accurate in determining whether drugs will alter contractility of the human heart. To evaluate the suitability of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for predictive safety pharmacology, we quantified changes in contractility, voltage, and/or Ca2+ handling in 2D monolayers or 3D engineered heart tissues (EHTs). Protocols were unified via a drug training set, allowing subsequent blinded multicenter evaluation of drugs with known positive, negative, or neutral inotropic effects. Accuracy ranged from 44% to 85% across the platform-cell configurations, indicating the need to refine test conditions. This was achieved by adopting approaches to reduce signal-to-noise ratio, reduce spontaneous beat rate to ≤ 1 Hz or enable chronic testing, improving accuracy to 85% for monolayers and 93% for EHTs. Contraction amplitude was a good predictor of negative inotropes across all the platform-cell configurations and of positive inotropes in the 3D EHTs. Although contraction- and relaxation-time provided confirmatory readouts forpositive inotropes in 3D EHTs, these parameters typically served as the primary source of predictivity in 2D. The reliance of these “secondary” parameters to inotropy in the 2D systems was not automatically intuitive and may be a quirk of hiPSC-CMs, hence require adaptations in interpreting the data from this model system. Of the platform-cell configurations, responses in EHTs aligned most closely to the free therapeutic plasma concentration. This study adds to the notion that hiPSC-CMs could add value to drug safety evaluation

    Association between anemia and quality of life in a population sample of individuals with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Several studies investigated the association of anemia with health related quality of life (HRQL) in patients with chronic disease. However, there is little evidence regarding the association of anemia with HRQL in patients with chronic obstructive pulmonary disease (COPD). METHODS: This is a post-hoc analysis of a study which enrolled a population of adults aged 35–79 randomly selected from residents of Erie and Niagara Counties, NY, between 1996 and 2000. In addition to demographic information and physical measurements, we obtained spirometry data and hemoglobin levels. We used modified Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria to define COPD, and World Health Organization (WHO) criteria to define anemia. To assess HRQL we used the Short Form-36 (SF-36) to assess physical functioning (PF), physical component summary (PCS) measures and mental component summary (MCS) measures. RESULTS: In the entire study population (n = 2704), respondents with anemia had lower scores on the physical functioning domain [45.4 (SD10.9) vs. 49.2 (SD 9.1); p < 0.0001]. Among patients with COPD (n = 495) the PF scores (39.9 vs. 45.4) and the PCS (41.9 vs. 45.9) were significantly lower in individuals with anemia compared to those without. In multiple regression analysis, the association between hemoglobin and PCS was positive (regression coefficient 0.02, p = 0.003). There was no significant association of hemoglobin with PF scores or the mental component summary measure after adjusting for covariates in patients with COPD. CONCLUSION: In patients with moderate to very severe COPD anemia may be associated with worse HRQL. However, co-morbidities may explain part or all of this association in these patients
    • …
    corecore