66 research outputs found

    Electromagnetic penguin operators and direct CP violation in K --> pi l^+ l^-

    Get PDF
    Supersymmetric extensions of the Standard Model predict a large enhancement of the Wilson coefficients of the dimension-five electromagnetic penguin operators affecting the direct CP violation in K_L --> pi^0 e^+ e^- and the charge asymmetry in K^\pm --> pi^\pm l^+ l^-. Here we compute the relevant matrix elements in the chiral quark model and compare these with the ones given by lattice calculationsComment: 12 pages, JHEP style, gluonic corrections to B_T adde

    Vus and lepton universality from kaon decays with the KLOE detector

    Get PDF
    KLOE has measured most decay branching ratios of Ks, Kl and K+/- mesons. It has also measured the Kl and the K+- lifetime and determined the shape of the form factors involved in kaon semileptonic decays. We present in the following a description of the above measurements and a well organized compendium of all of our data, with particular attention to correlations. These data provide the basis for the determination of the CKM parameter Vus and a test of the unitarity of the quark flavor mixing matrix. We also test lepton universality and place bounds on new physics using measurements of Vus from Kl2 and Kl3 decays.Comment: 23 pages, 12 figures. Submitted to JHE

    Measurement of the absolute branching ratios for semileptonic K+/- decays with the KLOE detector

    Full text link
    Using a sample of over 600 million phi->K+K- decays collected at the Dafne e+e- collider, we have measured with the KLOE detector the absolute branching ratios for the charged kaon semileptonic decays, K+/- -> p0 e nu (gamma) (Ke3) and K+/- -> p0 mu nu (gamma) (Kmu3). The results, BR(Ke3) = 0.04965 +/- 0.00038_{stat} +/- 0.00037_{syst} and BR(Kmu3) = 0.03233 +/- 0.00029_{stat} +/- 0.00026_{syst}, are inclusive of radiation. Accounting for correlations, we derive the ratio Kmu3/Ke3 = 0.6511+/-0.0064. Using the semileptonic form factors measured in the same experiment, we obtain V_{us}f_{+}(0) = 0.2141 +/- 0.0013.Comment: 13 pages, 3 figures, submitted to JHEP. v2: minor revisions required by JHEP, v3: final version published by JHEP (replacement of 2 incorrect affiliations)link: http://www.iop.org/EJ/abstract/1029-8479/2008/02/09

    Precision measurement of σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma) and determination of the π+π\pi^+\pi^- contribution to the muon anomaly with the KLOE detector

    Full text link
    We have measured the ratio σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma), with the KLOE detector at DAΦ\PhiNE for a total integrated luminosity of \sim 240 pb1^{-1}. From this ratio we obtain the cross section σ(e+eπ+π)\sigma(e^+e^-\rightarrow\pi^+\pi^-). From the cross section we determine the pion form factor Fπ2|F_\pi|^2 and the two-pion contribution to the muon anomaly aμa_\mu for 0.592<Mππ<0.9750.592<M_{\pi\pi}<0.975 GeV, Δππaμ\Delta^{\pi\pi} a_\mu= (385.1±1.1stat±2.7sys+theo)×1010({\rm 385.1\pm1.1_{stat}\pm2.7_{sys+theo}})\times10^{-10}. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.Comment: 18 pages, 8 figures, minor text corrections, one table added, version to appear on Physics Letters

    Precise measurements of the eta and the neutral kaon meson masses with the KLOE detector

    Full text link
    We present precise measurements of the eta and K0 masses using the processes phi to eta gamma, eta to gamma gamma and phi to Ks Kl, Ks to pi+ pi-. The K0 mass measurement, M_K=497.583 +/- 0.005 (stat) +/- 0.020 (syst) MeV, is in acceptable agreement with the previous measurements but is more accurate. We find m(eta) = 547.874 +/- 0.007 (stat) +/- 0.031 (syst) MeV. Our value is the most accurate to date and is in agreement with two recent measurements based on eta decays, but is inconsistent, by about 10 sigma, with a measurement of comparable precision based on eta production at threshold.Comment: 15 pages, 8 figures Submitted to Physics Letters

    Limit on the production of a new vector boson in e+eUγ\mathrm{e^+ e^-}\rightarrow {\rm U}\gamma, Uπ+π\rightarrow \pi^+\pi^- with the KLOE experiment

    Get PDF
    The recent interest in a light gauge boson in the framework of an extra U(1) symmetry motivates searches in the mass range below 1 GeV. We present a search for such a particle, the dark photon, in e+eUγ{\rm e^+ e^-}\rightarrow {\rm U}\gamma, Uπ+π\rightarrow \pi^+\pi^- based on 28 million e+eπ+πγ\mathrm{e^+ e^-} \rightarrow \pi^+ \pi^-\gamma events collected at DAΦ\PhiNE by the KLOE experiment. The π+π\pi^+ \pi^- production by initial-state radiation compensates for a loss of sensitivity of previous KLOE Ue+e{\rm U} \rightarrow \mathrm{e^+ e^-}, μ+μ\mu^+\mu^- searches due to the small branching ratios in the ρω\rho-\omega resonance region. We found no evidence for a signal and set a limit at 90\% CL on the mixing strength between the photon and the dark photon, ε2\varepsilon^2, in the U mass range between 527527 and 987987~MeV. Above 700 MeV this new limit is more stringent than previous ones.Comment: 6 pages, 9 figures, 1 table, submitted to Phys. Lett.

    Measurement of the ϕπ0e+e\phi \to \pi^0 e^+e^- transition form factor with the KLOE detector

    Get PDF
    A measurement of the vector to pseudoscalar conversion decay ϕπ0e+e\phi \to \pi^0 e^+e^- with the KLOE experiment is presented. A sample of 9500\sim 9500 signal events was selected from a data set of 1.7 fb1^{-1} of e+ee^+e^- collisions at smϕ\sqrt{s} \sim m_{\phi} collected at the DAΦ\PhiNE e+ee^+e^- collider. These events were used to obtain the first measurement of the transition form factor Fϕπ0(q2)| F_{\phi \pi^0}(q^2) | and a new measurement of the branching ratio of the decay: BR(ϕπ0e+e)=(1.35±0.050.10+0.05)×105\rm{BR}\,(\phi \to \pi^0 e^+e^-) = (\,1.35 \pm 0.05^{\,\,+0.05}_{\,\,-0.10}\,) \times 10 ^{-5}. The result improves significantly on previous measurements and is in agreement with theoretical predictions.Comment: 13 pages, 4 figures; matches published versio

    Study of the a_0(980) meson via the radiative decay phi->eta pi^0 gamma with the KLOE detector

    Full text link
    We have studied the phi->a_0(980) gamma process with the KLOE detector at the Frascati phi-factory DAPhNE by detecting the phi->eta pi^0 gamma decays in the final states with eta->gamma gamma and eta->pi^+ pi^- pi^0. We have measured the branching ratios for both final states: Br(phi->eta pi^0 gamma)=(7.01 +/- 0.10 +/- 0.20)x10^-5 and (7.12 +/- 0.13 +/- 0.22)x10^-5 respectively. We have also extracted the a_0(980) mass and its couplings to eta pi^0, K^+ K^-, and to the phi meson from the fit of the eta pi^0 invariant mass distributions using different phenomenological models.Comment: 17 pages, 6 figures, submitted to Physics Letters B. Corrected typos in eq.

    Measurement of {\eta} meson production in {\gamma}{\gamma} interactions and {\Gamma}({\eta}-->{\gamma}{\gamma}) with the KLOE detector

    Get PDF
    We present a measurement of {\eta} meson production in photon-photon interactions produced by electron-positron beams colliding with \sqrt{s}=1 GeV. The measurement is done with the KLOE detector at the \phi-factory DA{\Phi}NE with an integrated luminosity of 0.24 fb^{-1}. The e^+e^- --> e^+e^-{\eta} cross section is measured without detecting the outgoing electron and positron, selecting the decays {\eta}-->{\pi}^+{\pi}^-{\pi}^0 and {\eta}-->{\pi}^0{\pi}^0{\pi}^0. The most relevant background is due to e^+e^- --> {\eta}{\gamma} when the monochromatic photon escapes detection. The cross section for this process is measured as {\sigma}(e^+e^- -->{\eta}{\gamma}) = (856 \pm 8_{stat} \pm 16_{syst}) pb. The combined result for the e^+e^- -->e^+e^-{\eta} cross section is {\sigma}(e^+e^- -->e^+e^-{\eta}) = (32.72 \pm 1.27_{stat} \pm 0.70_{syst}) pb. From this we derive the partial width {\Gamma}({\eta}-->{\gamma}{\gamma}) = (520 \pm 20_{stat} \pm 13_{syst}) eV. This is in agreement with the world average and is the most precise measurement to date.Comment: Version accepted by JHE
    corecore