10 research outputs found

    Improving Outcome in Gastrointestinal and Hepatopancreaticobiliary Surgical Oncology by Preoperative Risk Assessment and Optimization of Perioperative Care

    Get PDF
    This chapter discusses the most important challenges in the perioperative phase of the oncology patient undergoing surgery of the gastrointestinal tract. Because of the aging population, the surgeon is ever more confronted with frail patients at risk for an adverse surgical outcome. The chapter therefore reviews factors contributing to an impaired postoperative outcome such as sarcopenia, frailty, cachexia, and malnutrition and gives an insight into their pathophysiology. Next, it provides an overview of validated preoperative classification systems to identify the patients at risk for surgical complications. Furthermore, it discusses the most essential recommendations of standardized care for patients undergoing hepatopancreaticobiliary, gastric, and colorectal surgery. Special attention is paid to the use of clinical pathways in the perioperative phase that are aimed at a multimodal approach of reducing surgical morbidity by lowering the perioperative physiological and psychological stress. Recent literature is discussed regarding care in the intensive care unit, and the final paragraph focuses on improving postoperative outcome by means of prehabilitation or exercise as well as dietary interventions and optimized nutrition

    Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice

    Get PDF
    OBJECTIVE: In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP expression. METHODS AND RESULTS: APOE*3-Leiden (E3L) mice, with a human-like lipoprotein profile and a human-like responsiveness to statin treatment, were crossbred with mice expressing human CETP under control of its natural flanking regions resulting in E3L.CETP mice. E3L and E3L.CETP mice were fed a Western-type diet with or without atorvastatin. Atorvastatin (0.01% in the diet) reduced plasma cholesterol in both E3L and E3L.CETP mice (-26 and -33%, P<0.05), mainly in VLDL, but increased HDL-cholesterol only in E3L.CETP mice (+52%). Hepatic mRNA expression levels of genes involved in HDL metabolism, such as phospholipid transfer protein (Pltp), ATP-binding cassette transporter A1 (Abca1), scavenger receptor class B type I (Sr-b1), and apolipoprotein AI (Apoa1), were not differently affected by atorvastatin in E3L.CETP mice as compared to E3L mice. However, in E3L.CETP mice, atorvastatin down-regulated the hepatic CETP mRNA expression (-57%; P<0.01) as well as the total CETP level (-29%) and cholesteryl esters (CE) transfer activity (-36%; P<0.05) in plasma. CONCLUSIONS: Atorvastatin increases HDL-cholesterol in E3L.CETP mice by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool

    Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo

    No full text
    Apolipoprotein CI (apoCI) has been suggested to influence HDL metabolism by activation of LCAT and inhibition of HL and CETP. However, the effect of apoCI on scavenger receptor BI (SR-BI)-mediated uptake of HDL-cholesteryl esters (CE), as well as the net effect of apoCI on HDL metabolism in vivo is unknown. Therefore, we evaluated the effect of apoCI on the SR-BI-mediated uptake of HDL-CE in vitro and determined the net effect of apoCI on HDL metabolism in mice. Enrichment of HDL with apoCI dose-dependently decreased the SR-BI-dependent association of [(3)H]CE-labeled HDL with primary murine hepatocytes, similar to the established SR-BI-inhibitors apoCIII and oxLDL. ApoCI deficiency in mice gene dose-dependently decreased HDL-cholesterol levels. Adenovirus-mediated expression of human apoCI in mice increased HDL levels at a low dose and increased the HDL particle size at higher doses. We conclude that apoCI is a novel inhibitor of SR-BI in vitro and increases HDL levels in viv

    Both Transient and Continuous Corticosterone Excess Inhibit Atherosclerotic Plaque Formation in APOE*3-Leiden.CETP Mice

    Get PDF
    Contains fulltext : 118079.pdf (publisher's version ) (Open Access)INTRODUCTION: The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. AIM: To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. METHODS: Pair-housed female APOE*3-Leiden.CETP (E3L.CETP) mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 microg/ml) for either 5 (transient group) or 17 weeks (continuous group), or vehicle (control group) in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. RESULTS: Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by -39% without lowering plasma cholesterol levels. In addition, there was a decrease of -56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. CONCLUSION: Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased atherosclerosis observed in humans in states of glucocorticoid excess may not be related to cortisol per se, but might be the result of complex indirect effects of cortisol
    corecore