1,782 research outputs found

    Nagel scaling and relaxation in the kinetic Ising model on a n-isotopic chain

    Full text link
    The kinetic Ising model on a n-isotopic chain is considered in the framework of Glauber dynamics. The chain is composed of N segments with n sites, each one occupied by a different isotope. Due to the isotopic mass difference, the n spins in each segment have different relaxation times in the absence of the interactions, and consequently the dynamics of the system is governed by multiple relaxation mechanisms. The solution is obtained in closed form for arbitrary n, by reducing the problem to a set of n coupled equations, and it is shown rigorously that the critical exponent z is equal to 2. Explicit results are obtained numerically for any temperature and it is also shown that the dynamic susceptibility satisfies the new scaling (Nagel scaling) proposed for glass-forming liquids. This is in agreement with our recent results (L. L. Goncalves, M. Lopez de Haro, J. Taguena-Martinez and R. B. Stinchcombe, Phys. Rev. Lett. 84, 1507 (2000)), which relate this new scaling function to multiple relaxation processes.Comment: 4 pages, 2 figures, presented at Ising Centennial Colloquium, to be published in the Proceedings (Brazilian Journal of Physics.

    The off-shell M5-brane and non-perturbative gauge theory

    Get PDF
    M5-branes wrapping a holomorphic curve in a Calabi-Yau manifold can be used to construct four-dimensional N=1 gauge theories. In this paper we will consider M5-brane configurations corresponding to N=2 theories broken to N=1 by a superpotential for the adjoint scalar field. These M5-brane configurations can be obtained by lifting suitable intersecting brane configurations in type IIA, or equivalently by T-dualizing IIB configurations with branes and/or fluxes. We will show that turning on non-trivial expectation values for the glueball superfields corresponds to non-holomorphic deformations of the M5-brane. We compute the superpotential and show it agrees with that computed by Dijkgraaf and Vafa. Several aspects of the gauge theory, such as the appearance of non-holomorphic one-forms with integer periods on the Seiberg-Witten curve, have a natural interpretation from the M5-brane point of view. We also explain the interpretation of the superpotential in terms of the twisted (2,0) theory living on the fivebrane

    Demixing can occur in binary hard-sphere mixtures with negative non-additivity

    Full text link
    A binary fluid mixture of non-additive hard spheres characterized by a size ratio γ=σ2/σ1<1\gamma=\sigma_2/\sigma_1<1 and a non-additivity parameter Δ=2σ12/(σ1+σ2)1\Delta=2\sigma_{12}/(\sigma_1+\sigma_2)-1 is considered in infinitely many dimensions. From the equation of state in the second virial approximation (which is exact in the limit dd\to\infty) a demixing transition with a critical consolute point at a packing fraction scaling as ηd2d\eta\sim d 2^{-d} is found, even for slightly negative non-additivity, if Δ>1/8(lnγ)2\Delta>-{1/8}(\ln\gamma)^2. Arguments concerning the stability of the demixing with respect to freezing are provided.Comment: 4 pages, 2 figures; title changed; final paragraph added; to be published in PRE as a Rapid Communicatio

    On symmetry and duality

    Get PDF

    On the liquid-glass transition line in monatomic Lennard-Jones fluids

    Full text link
    A thermodynamic approach to derive the liquid-glass transition line in the reduced temperature vs reduced density plane for a monatomic Lennard-Jones fluid is presented. The approach makes use of a recent reformulation of the classical perturbation theory of liquids [M. Robles and M. L\'opez de Haro, Phys. Chem. Chem. Phys. {\bf 3}, 5528 (2001)] which is at grips with a rational function approximation for the Laplace transform of the radial distribution function of the hard-sphere fluid. The only input required is an equation of state for the hard-sphere system. Within the Mansoori-Canfield/Rasaiah-Stell variational perturbation theory, two choices for such an equation of state, leading to a glass transition for the hard-sphere fluid, are considered. Good agreement with the liquid-glass transition line derived from recent molecular dynamic simulations [Di Leonardo et al., Phys. Rev. Lett. {\bf 84}, 6054(2000)] is obtained.Comment: 4 pages, 2 figure
    corecore