research

Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal

Abstract

The contact values gij(σij)g_{ij}(\sigma_{ij}) of the radial distribution functions of a dd-dimensional mixture of (additive) hard spheres are considered. A `universality' assumption is put forward, according to which gij(σij)=G(η,zij)g_{ij}(\sigma_{ij})=G(\eta, z_{ij}), where GG is a common function for all the mixtures of the same dimensionality, regardless of the number of components, η\eta is the packing fraction of the mixture, and zijz_{ij} is a dimensionless parameter that depends on the size distribution and the diameters of spheres ii and jj. For d=3d=3, this universality assumption holds for the contact values of the Percus--Yevick approximation, the Scaled Particle Theory, and, consequently, the Boublik--Grundke--Henderson--Lee--Levesque approximation. Known exact consistency conditions are used to express G(η,0)G(\eta,0), G(η,1)G(\eta,1), and G(η,2)G(\eta,2) in terms of the radial distribution at contact of the one-component system. Two specific proposals consistent with the above conditions (a quadratic form and a rational form) are made for the zz-dependence of G(η,z)G(\eta,z). For one-dimensional systems, the proposals for the contact values reduce to the exact result. Good agreement between the predictions of the proposals and available numerical results is found for d=2d=2, 3, 4, and 5.Comment: 10 pages, 11 figures; Figure 1 changed; Figure 5 is new; New references added; accepted for publication in J. Chem. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019