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Abstract

M5-branes wrapping a holomorphic curve in a Calabi-Yau manifold can be used to construct

four-dimensional N = 1 gauge theories. In this paper we will consider M5-brane configurations

corresponding to N = 2 theories broken to N = 1 by a superpotential for the adjoint scalar

field. These M5-brane configurations can be obtained by lifting suitable intersecting brane

configurations in type IIA, or equivalently by T-dualizing IIB configurations with branes and/or

fluxes. We will show that turning on non-trivial expectation values for the glueball superfields

corresponds to non-holomorphic deformations of the M5-brane. We compute the superpotential

and show it agrees with that computed by Dijkgraaf and Vafa. Several aspects of the gauge

theory, such as the appearance of non-holomorphic one-forms with integer periods on the Seiberg-

Witten curve, have a natural interpretation from the M5-brane point of view. We also explain the

interpretation of the superpotential in terms of the twisted (2,0) theory living on the fivebrane.
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1 Introduction

Recently, major progress has been achieved in understanding the interconnections between F-

terms in 4d N = 1 SYM theory, topological string theory, matrix models, and integrable sys-

tems, starting with [1]. In particular, a remarkably simple prescription to determine the non-

perturbative superpotential of certain N = 1 gauge theories in terms of a matrix integral was

given in [1]. The superpotential is expressed as a function of gluino condensate superfields Si,

and it is intriguing that one is in some sense doing off-shell computations, i.e. away from the

supersymmetric minima of the superpotential.

One aspect of this off-shell construction that has been less well understood is the need

to include non-holomorphic quantities when one goes off-shell. In the type IIB construction

of these gauge theories [2] one employs a Calabi-Yau manifold with three-form flux, and the

superpotential is of the form W =
∫

H ∧ Ω, with H = HR + τHNS the three-form flux and

Ω the holomorphic three-form. Superficially, the entire superpotential comes from the anti-

holomorphic part of the flux. This parallels the discussion in field theory [3, 4], where it was

shown that the off-shell variation of the superpotential involves a closed one-form T that is

not holomorphic. This is because once one has fixed the A- and B-periods of a holomorphic

differential, one cannot independently turn on expectation values for the gaugino condensates –

as this corresponds to varying the moduli of the underlying Riemann surface. If one wants to

do the latter, one needs to consider a non-holomorphic one-form T .

In the present paper we wish to study the non-perturbative physics and in particular the

superpotential of deformed N = 2 gauge theories from the M-theory perspective. The descrip-

tion of N = 2 theories in terms of an M5-brane wrapped on the Seiberg-Witten curve was first

found in [5], by lifting a suitable intersecting brane configuration in type IIA to M-theory. This

was generalized to mass-deformed N = 2 and pure N = 1 theories in [6, 7]. For a review and

applications of intersecting brane configurations to gauge dynamics see e.g. [8]. The M5-brane

configuration for N = 2 theories deformed by a general superpotential for the adjoint scalar

field was found in [9], again by lifting a suitable brane configuration from type IIA to M-theory.

The process of lifting a brane configuration from type IIA to M-theory is T-dual to the large N

transition of [10]: the type IIA configuration with intersecting branes is dual to a resolved type

IIB geometry with D5 branes wrapping P
1’s, whereas the M-theory configuration is dual to the

deformed type IIB geometry with fluxes (see e.g. [11]). The field theory living on the world-

volume of the M5-brane is not quite that of an ordinary supersymmetric four-dimensional gauge

theory, due to the existence of additional light degrees of freedom coming from the KK-modes

of the M-theory circle. For this reason the field theory is sometimes called MQCD instead of

QCD. However, as long as we consider BPS-like quantities such as the F-terms in the low-energy

effective field theory the M5-brane yields the same answer as the gauge theory. The agreement

breaks down for non-BPS quantities such as the Kähler potential of N = 1 theories and higher

derivative terms in the N = 2 theory [12].

Since the superpotential is a holomorphic quantity one should be able to compute it directly

from the M5-brane configuration. In [5] an expression for the effective superpotential was pro-

posed and evaluated in a few examples. This expression is rather cumbersome to work with

(some more examples are worked out in [13]). Here we will compute this superpotential in more

general cases, and hopefully shed some light on its interpretation. In particular, the M-theory
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setup gives a purely geometric interpretation of all the quantities involved in the Dijkgraaf-Vafa

proposal, and can be seen as a pure geometric dual of the type IIB setup with fluxes: all infor-

mation is encoded in a surface embedded in R
5 × S1. We will give a precise off-shell definition

of the superpotential and we will see that it reproduces the Dijkgraaf-Vafa result for 4d SYM

theory. As it will turn out, going off-shell is quite subtle, as the embedding of the fivebrane

in the Calabi-Yau will no longer be holomorphic. We will also discuss how the superpotential

arises from the kinetic term for the scalars in the (2,0) theory living on the world-volume of the

fivebrane via deconstruction. This generalizes the relation between the (2,0) theory and N = 2

SYM [14, 12] to the case of N = 1, and in particular to the precise computation of the F-terms.

In the N = 2 case the fivebrane worldvolume is of the form R
4 × Σ, where the Riemann

surface Σ is holomorphically embedded in R
3×S1. Thus there is a non-trivial background value

for one of the complex transverse scalars. In the case of N = 1, two transverse scalars, which we

call t and w, have a non-trivial configuration, and so we will take Σ to be embedded in R
5 × S1

with complex coordinates t, w, v. The complex coordinate t takes values in C
∗ and parametrizes

the cylinder R× S1, whereas v,w take values in the complex plane. On-shell, the embedding is

given by two algebraic equations [9]:

t2 − 2PN (v)t+ Λ2N
N=2 = 0

w2 − 2W ′
m(v)w − f̃m−1(v) = 0 . (1)

where PN ,W ′
m and f̃m−1 are polynomials of degrees N,m,m − 1. In order for t and w to be

meromorphic with a prescribed singularity structure, the following factorization formulas must

also hold:

PN (v)2 − Λ2N
N=2 = S2

N−n(v)y(v)

W ′
m(v)2 + f̃m−1(v) = H2

m−n(v)y(v) (2)

for suitable polynomials S,H, and y(v) describes a Riemann surface of genus n− 1:

y2 = G2
n(v) + fn−1(v) . (3)

By counting parameters we see that (2) has the same number of free parameters as there are

equations for fixed W ′
m. Thus given a superpotential W , these equations will generically have a

discrete set of solutions for all other coefficients. This factorization agrees with the results from

field theory [9, 2]. We propose the following relation of the embedding coordinates t and w to

the gauge theory quantities:

Ni =
1

2πi

∮

Ai

dt

t
τ + τi =

1

2πi

∫

B̂i

dt

t

Si =
1

2πi

∮

Ai

wdv
∂F

∂Si
=

∮

Bi

wdv . (4)

Ni is the classical U(N) →
∏n

i=1 U(Ni) symmetry breaking pattern, τ is the U(1) ⊂ U(N)

coupling constant [2] (which is the bare coupling constant of the YM theory), the τi are integers

that describe generalized theta-angles [3], Si are the corresponding gluino condensates, and ∂F
∂Si

are the dual magnetic variables. B̂i are the non-compact B-periods, i.e. B̂i = Bi + Bn where
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Bi, the compact periods, and the non-compact period Bn, are defined in appendix A. These

relations become obvious once we realize that dt/t and wdv are related to the gauge theory and

matrix model resolvents. Namely

dt

t
= Trgauge theory

(

dv

v − Φ

)

(5)

is the gauge theory resolvent [15, 3], whereas

wdv = 2Trmatrix theory

(

dv

v −M

)

= −
1

16π2
Trgauge theory

(

WαW
αdv

v −Φ

)

(6)

[1, 15]. Thus the M5-brane treats the gauge theory and matrix model on a symmetric footing:

the gauge theory curve is the projection in the t, v-plane, whereas the matrix model curve is

the projection in the t, w plane. The above relations are valid on-shell. To go off-shell, we want

to be able to vary the Si’s at will, keeping the periods of dt/t fixed. From the M5-brane point

of view, this corresponds to deforming the way the Riemann surface is embedded in R
5 × S1.

Thus we look for a continuous family of deformations of Σ. However, we will find that such

deformations do not exist unless they are non-holomorphic, which makes t = t(v, v̄) a function

of both v and v̄. This precisely parallels the discussion in the gauge theory [4], where it was

found that the one-form T , which corresponds to our dt/t, had to be non-holomorphic. We will

analyze in detail this non-holomorphic embedding, and we will find that it can be solved only if

we include also a log-normalizable anti-holomorphic deformation.

Notice that only t, and not w, will be non-holomorphic off-shell. Indeed, the fact that t

parametrizes a cylinder, t = exp(−(x6+ ix10)/R) with x10 the compact M-theory direction with

radius R, implies that the periods of dt/t have to be integers, and this gives an interesting

new purely geometrical interpretation of the integrality of the periods of T around the compact

cycles. Once we go off-shell we only change the periods of wdv while keeping its asymptotic

behavior fixed. Under T-duality to the IIB description, the one-form dt/t maps to the flux

three-form H, while the one-form wdv maps to the complex structure three-form Ω. In this

way the deformations of the Riemann-surface are in one-to-one correspondence with complex

structure deformations of the T-dual Calabi-Yau.

The main goal in this paper is to study the non-holomorphic deformations of the M5-brane

and to rederive the gauge theory superpotential from this perspective. In particular we will

encounter several different definitions of the superpotential that all turn out to be equivalent.

The outline of this paper is as follows. In section 2 we will briefly review the brane construction

of the gauge theory and its lift to M-theory. We will also describe the way in which the world-

volume is twisted and see that this may provide a natural framework to understand a peculiar

auxiliary supermultiplet found in [15]. In section 3 we discuss the non-holomorphic embedding

of the M5-brane, and use this to compute the expression for the superpotential proposed in [7].

In section 4 we consider the non-holomorphic geometries in some more detail, and in section 5 we

discuss some further aspects of the M5-brane world-volume theory, such as the “deconstruction”

interpretation of the superpotential. Several open problems are given at the end in section 6.
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2 The on-shell M5-brane construction

It is well-known that an M5-brane with worldvolume R4×Σ preserves half the supersymmetry if

Σ is holomorphically embedded in a 2-dimensional complex space, for example in R
3 × S1. The

fluctuations of this Riemann surface in R
3 × S1 are then described by a single complex scalar

superfield. In order to break supersymmetry to N = 1 we need to consider a configuration where

two complex scalars are active, which happens for instance when Σ is a holomorphic two-cycle

in a Calabi-Yau X. In fact, the requirements of meromorphy of the embedding and a choice of

boundary conditions at infinity are enough to determine the fivebrane geometry. In this section

we will review this on-shell description.

2.1 The type IIA picture

It is useful to start from type IIA and then lift to M-theory. The N = 2 SU(N) super-Yang

Mills theory can be engineered with N D4-branes suspended between two NS5-branes [5]. Our

notation will be as follows. We denote the coordinates along the worldvolume of the D4-branes

by x0, x1, x2, x3, x6, and those of the NS 5-branes by x0, x1, x2, x3, x4, x5. The NS 5-branes are

at a finite distance from each other along the x6-direction. Classically, the positions of the D4-

branes in transverse space are fixed, but quantum mechanically they are allowed to fluctuate,

becoming scalar fields on the brane with fixed boundary conditions at the ends, where the NS

5-branes sit. Together with x6 and the gauge field component along x6, the scalar fields are

parametrized by v = x4 + ix5, w = x7 + ix8. The classical rotation invariances along the x4, x5

and x7, x8, x9 directions, U(1)4,5 and SU(2)7,8,9, respectively, correspond to the classical U(1)

and SU(2) R-symmetries of the 4-dimensional theory on the D4-branes.

To obtain a configuration with N = 1 supersymmetry with arbitrary superpotential for

the adjoint scalar field, we consider the brane construction in [9], in which the first NS 5-

brane extends along x0, x1, x2, x3, x4, x5, whereas N − 1 NS’ 5-branes have worldvolume co-

ordinates x0, x1, x2, x3, x7, x8. The D4-branes between them have worldvolume coordinates

x0, x1, x2, x3, x6. (Constructions involving non-generic superpotentials were also given in [16,

17, 6, 7]). As shown in [9], adding a superpotential of the form

Wtree =

N
∑

k=2

µkTrΦ
k (7)

corresponds to bending the NS’ 5-branes, allowing them to stretch in the (v,w) plane. Classically,

the minima of (7) give the separation of the NS’ 5-branes in the v-direction. It will however be

more convenient to view the NS’ 5-branes as a single NS 5-brane bent in the w-direction, rather

than N − 1 NS’ 5-branes bent in the v-direction, since this is the appropriate configuration for

finite values of the µk [9].

2.2 Lifting to M-theory

The M-theory configuration [5] consists of a single M5-brane wrapped on a 2-cycle Σ of a Calabi-

Yau X = R
5 × S1. Σ will generically be a Riemann surface of genus N − 1. The world-volume

of the M5-brane is thus R4 × Σ, and the total space is R4 ×X × R; as a separate problem one
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can also take the total space to be R
4 ×X × S1, so that one can T-dualize from IIA to the IIB

picture. This is however not quite the standard 4d gauge theory, since it corresponds to having

a compact x9-direction. The field theory lives on the R
4 spanned by x0, . . . , x3, whereas t, v, w

are complex coordinates v = x4 + ix5, w = x7 + ix8, t = es = e−R−1(x6+ix10) on X. They can be

used to describe the transverse fluctuations of Σ embedded in X.

As shown in [5], for N = 2 theories, Σ is a Riemann surface given by an algebraic equation

in the (v, t) plane, the N = 2 Seiberg-Witten curve:

t2 − 2PN (v) t+ Λ2N
N=2 = 0 , (8)

where PN (v) is a polynomial of order N in v. t is related to the more commonly used variable

y, defined by

y2 = P 2
N (v) − Λ2N

N=2 , (9)

by t = y + PN (v). However, in the remainder of the paper, we will use y(v) not to denote the

variable defined by the above relation, but by the relation

S2
N−n(v) y

2 = P 2
N (v) − Λ2N

N=2 , (10)

where SN−n(v) contains all the double zeroes of P 2
N (v) − Λ2N

N=2.

The M-theory configuration corresponding to the IIA set-up with a superpotential Wtree was

constructed in [9]. The left NS 5-brane corresponds to the asymptotic region v → ∞, t ∼ vN ,

and the right NS 5-brane to v → ∞, t ∼ Λ2N
N=2v

−N . One imposes the following boundary

conditions on w at infinity:

w → 2W ′
m(v) as v → ∞, t ∼ Λ2N

N=2v
−N

w → 0 as v → ∞, t ∼ vN , (11)

where W ′
m(v) is a polynomial of order m that corresponds to the field theory tree level su-

perpotential. Notice that here m does not have to be equal to N − 1. Physically, the above

means that we bend one of the two NS 5-branes in such a way that the masses of open strings

stretched between a straight D4 brane and one of the two 5-branes is proportional to W ′
m(v), in

agreement with the classical properties of the field theory deformed by the superpotential (7).

As we will see, these two regions correspond to the two “branches”, “quantum” and “classical”,

respectively, in [4].

There is an alternative choice of boundary conditions, but this only corresponds to inter-

changing the two NS 5-branes. More generally, we could impose w → aW ′
m(v) on one branch,

and w → bW ′
m(v) on another, with a− b = 2, but that will not affect any of the F-term physics.

It might have some effect on non-holomorphic terms in the 4d effective action but we will not

explore that here.

In the analysis of [9], the fact that the form of the N = 2 curve remains unchanged under the

breaking to N = 1 means that the embedding coordinate t still satisfies equation (8). Breaking

to N = 1, however, does require this curve to factorize, as we will now see. As for w, which was

zero in the N = 2 case – its form can be fixed from the requirement that it is a rational function

of t and v satisfying the above boundary conditions. The analysis then leads to the following

6



conclusions (for details we refer to [9]). The requirement that w be a rational function of t, v

with no other poles than at infinity, implies that it can be written in the following form:

w(t, v) = Nm(v) +
Hm−n(v)

SN−n(v)
(t− PN (v)), (12)

where Nm(v) and Hm−n(v) are as yet arbitrary polynomials of the order indicated, PN (v) is

the polynomial appearing in the N = 2 curve, and SN−n(v) is the set of double roots in the

factorization formula of the Seiberg-Witten curve:

P 2
N (v)− Λ2N

N=2 = S2
N−n(v)Q2n(v) , (13)

so that SN−n and Q2n are given by

SN−n(v) =
N−n
∏

i=1

(v − si)

Q2n(v) =
2n
∏

i=1

(v − qi) (14)

where all qi’s are different. Using the expression for t in (8), w can also be rewritten as

w(t±(v), v) = Nm(v)±Hm−n(v)
√

Q2n(v) , (15)

depending on whether we choose the plus or the minus solution. These two different choices

correspond to the two different asymptotic regions.

One now has to impose the boundary conditions on w. The first boundary condition, t =

t−(v) ∼ vN as v → ∞, completely fixes Nm(v):

Nm(v) = [Hm−n(v)
√

Q2n(v)]+ , (16)

where [Q(v)]+ is the part of Q with non-negative powers of v, in a power series expansion around

v = ∞. Substituting this in w, we get in the second asymptotic region

w(t+(v), v) = 2[Hm−n(v)
√

Q2n(v)]+ +O

(

1

v

)

(17)

as v → ∞, t = t+(v) ∼ v−N . The second boundary condition thus amounts to

Nm(v) = [Hm−n(v)
√

Q2n(v)]+ = W ′
m(v) . (18)

The two equations (16) and (18) can be rephrased as Nm = W ′
m and f̃m−1+N2

m−Q2nH
2
m−n = 0

for some polynomial f̃m−1 of order m− 1, and m can in general be different from N − 1.

Summarizing, the world-volume of the M5-brane is R
4 × Σ where Σ is a Riemann surface

embedded in R
5 × S1 with complex coordinates t, w, v. The Riemann surface is defined by the

following embedding:

t2 − 2PN (v)t+ Λ2N
N=2 = 0

w2 − 2W ′
m(v)w − f̃m−1(v) = 0 , (19)
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which indeed gives a one-dimensional complex surface. Notice that Σ can be viewed as the

intersection of two different Riemann surfaces, one in the t−v plane defined by the first equation,

and the other in the w − v plane, defined by the second equation. This “doubling” precisely

parallels the field theory behavior [15].

Furthermore, N = 1 supersymmetry imposes factorization formulas on this Riemann surface,

so that its genus is reduced from N − 1 to n− 1:

P 2
N (v) − Λ2N

N=2 = S2
N−n(v)Q2n(v)

W ′
m(v)2 + f̃m−1 = H2

m−n(v)Q2n(v) . (20)

These are the requirements that there exist meromorphic functions on the Riemann surface with

the prescribed boundary conditions.

So we see that, except at the points where v blows up, one can think of v and

y =
√

Q(v) (21)

as coordinates on the Riemann surface, which has genus n − 1, with branch cuts between the

2n zeroes qi of Q(v). We will follow the notation in [4], where a point is denoted by p if

(v, y) = (p,
√

Q(p)) and by p̃ if (v, y) = (p,−
√

Q(p)). We will also decompose Q(v) as

Q(v) = G2
n(v) + fn−1(v). (22)

At this point it is clear that t and w have precisely the same properties as the gauge theory

and matrix model resolvents [1, 15], where

T (v) =
dt

t
= Trgauge theory

(

dv

v − Φ

)

= d log(PN + y) (23)

is the gauge theory resolvent, whereas

R(v) = wdv = 2Trmatrix theory

(

dv

v −M

)

= −
1

16π2
Trgauge theory

(

WαW
αdv

v − Φ

)

= W ′
m(v)−

√

W ′
m(v)2 + f̃m−1(v) (24)

is the matrix model resolvent. Notice that the two branches, classical and quantum, of the

Riemann surface, arise naturally as the two asymptotic regions of the 5-brane.

So far the discussion was on-shell. Indeed, fixing the boundary conditions W ′
m(v) at infinity

completely fixes all the remaining coefficients, and so there is no room for holomorphic defor-

mations of the brane configuration. In the next section we will see how to define deformations

of y so our discussion can parallel the deformations of the gauge theory where one turns on

expectation values for the gluino condensates. We first discuss a few aspects of the twisted

world-volume theory.

2.3 The twisted (2, 0) theory

The world-volume theory of M5-branes is quite complicated due to the presence of a self-dual

tensor field. For general curved world-volumes embedded in eleven-dimensional supergravity,
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the world-volume theory for a single M5-brane was constructed in [18, 19]. A simple action for

a flat M5-brane in flat eleven dimensions is given in [20], although this action also depends on

the anti-self dual part of the tensor field. The latter paper also contains a useful summary of

the various symmetries of the theory.

The standard (2, 0) theory has sixteen supercharges that transform as (4,4) under SO(5, 1)×

SO(5)R, the product of the Lorentz group and the SO(5) R-symmetry group. However, once we

wrap the M5-brane on a non-trivial Riemann surface, the world-volume theory is automatically

twisted [21]. The twist is such that the transverse scalars, which for a flat brane live in a

trivial bundle over the world-volume, become sections of the normal bundle over the Riemann

surface. To describe the twist, we notice that the Lorentz group is reduced from SO(5, 1) to

SO(3, 1) × SO(2) once we wrap the fivebrane on a non-trivial surface. Twisting the theory

means that we embed the SO(2) part of the broken Lorentz group in the SO(5) R-symmetry

group. Since one of the five scalars is always trivial (x9 in our notation), we need to embed

SO(2) in a SO(4) = SU(2) × SU(2) subgroup of SO(5)R.

To determine the quantum numbers after the twisting, we first write the quantum numbers

of the scalars and supercharges in terms of SU(2) × SU(2) × U(1) × SU(2)L × SU(2)R, where

the first two SU(2)’s represent the Lorentz group SO(3, 1)1, the U(1) ∼ SO(2) represents the

internal part of the Lorentz group, and the last two SU(2)’s represent the SO(4) ⊂ SO(5)

subgroup of the R-symmetry group that plays a role in the twisting. Before the twisting, the

scalars and supercharges transform as

Φ [(1,1)0, (2,2)] ⊕ [(1,1)0, (1,1)]

Q [(2,1)1, (2,1)] ⊕ [(2,1)1, (1,2)]

Q̄ [(1,2)−1, (2,1)] ⊕ [(1,2)−1, (1,2)]

(25)

where [(j1, j2)m, (j3, j4)] contains the quantum numbers (j1, j2,m, j3, j4) under SU(2)×SU(2)×

U(1) × SU(2)L × SU(2)R, the first two SU(2)’s being the Lorentz group and the last two the

R-symmetry.

The U(1) that rotates log t but not w is the U(1) that is diagonally embedded in SU(2)L ×

SU(2)R, whereas the U(1) that rotates w but not log t is the off-diagonal one. Therefore, the

N = 2 twist is the one where the U(1) part of the Lorentz group is diagonally embedded in

SU(2)L × SU(2)R, whereas the N = 1 twist is the one where the U(1) is embedded in SU(2)L
only. After the N = 2 twist the fields transform as

Φ (1,1)0 ⊕ (1,1)0 ⊕ (1,1)0 ⊕ (1,1)2 ⊕ (1,1)−2

Q (2,1)2 ⊕ (2,1)2 ⊕ (2,1)0 ⊕ (2,1)0
Q̄ (1,2)0 ⊕ (1,2)0 ⊕ (1,2)−2 ⊕ (1,2)−2

. (26)

From this we see that half of the supersymmetries transform as a scalar on the Riemann surface,

and these supersymmetries give rise to the unbroken N = 2 in four dimensions. In addition,

log t transforms as a section of O(−2) and w as a section of O(0). This is consistent with the

fact that the normal bundle of the Riemann surface in R
5 × S1 should have degree −2.

1Rather, SU(2) × SU(2) represents the Euclidean Lorentz group, but we trust that this will not cause any

confusion.
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If we embed U(1) in SU(2)L, the scalar fields and supercharges transform as

Φ (1,1)0 ⊕ (1,1)1 ⊕ (1,1)1 ⊕ (1,1)−1 ⊕ (1,1)−1

Q (2,1)2 ⊕ (2,1)1 ⊕ (2,1)1 ⊕ (2,1)0
Q̄ (1,2)0 ⊕ (1,2)−1 ⊕ (1,2)−1 ⊕ (1,2)−2

. (27)

Now both log t and w transform as sections ofO(−1). Only 1/4 of the supersymmetries transform

as a scalar, and these yield the surviving N = 1 generators in four dimensions. The R-symmetry

of the resulting N = 1 field theory acts as (minus) the internal U(1) piece of the Lorentz group

before twisting. In particular, w and log t have no R-charge, whereas the one-form dv has R-

charge 2, and Q has R-charge −1. In terms of the SU(2) × SU(2) × U(1) × U(1)L × U(1)R
subgroup of SU(2)×SU(2)×U(1)×SU(2)L ×SU(2)R, the charges of log t, w and the unbroken

N = 1 generator Qα are

log t [(1,1)0, (−1,−1)]

w [(1,1)0, (−1,+1)]

Qα [(2,1)1, (−1, 0)]

. (28)

We normalized the eigenvalues of U(1) in such a way that they are always integer, i.e. they

are twice the spin. We also pick one of the other three supersymmetry generators (which is

broken once we wrap the five brane), denoted by Q̂α, with quantum numbers [(2,1)1, (0,−1)].

Though the corresponding symmetry is broken, we can still use it to build a supermultiplet,

which we write in terms of an auxiliary superspace with anti-commuting coordinates ηα. Using

the quantum numbers of Q̂α we find that an example of such a multiplet is

F = w + χαη
α +

∂ log t

∂v
ηαηα (29)

with some anti-commuting degree of freedom χα. if we compute the A-periods (4) of the differ-

ential Fdv, we obtain a four-dimensional supermultiplet of the form

1

2πi

∮

Ai

Fdv = Si + wαη
α +Niη

αηα (30)

which has precisely the form of the auxiliary supermultiplet introduced in [15]. The full effective

action can be written as an integral over auxiliary superspace of a holomorphic function of

this auxiliary supermultiplet. Thus, this auxiliary structure seems to have a direct origin in

the supersymmetry of the M5-brane. It would be interesting to work out the twist and the

corresponding KK reduction in more detail, as this would no doubt shed further light on the

structure of the four-dimensional effective action.

3 The off-shell superpotential

In [5], Witten defined a superpotential in terms of the M5-brane coordinates that reproduces the

on-shell value of the effective superpotential in the gauge theory. Holomorphic configurations

are minima of this superpotential.

The aim of this section is to show that this superpotential not only gives the correct on-shell

result, but can also be evaluated off-shell, and its off-shell value reproduces the Dijkgraaf-Vafa

result in terms of the gluino condensates.
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The precise definition of the superpotential is actually quite subtle, because the Riemann

surface we are considering is non-compact. However, before we turn to a discussion of the

superpotential we first need to describe the off-shell geometry of the M5-brane.

3.1 Off-shell deformations of the M5-brane

The on-shell configuration for the five-brane, as given in equations (19), (20) and (22), reads

t2 − 2PN (v)t+ Λ2N
N=2 = 0

w2 − 2W ′
m(v)w − f̃m−1(v) = 0 , (31)

where

P 2
N − Λ2N = S2

N−n(G
2
n + fn−1) (32)

(W ′
m)2 + f̃m−1 = H2

m−n(G
2
n + fn−1). (33)

Both t and w can be viewed as functions on the underlying Riemann surface y2 = G2
n + fn−1.

We are interested in varying this underlying Riemann surface, so that the glueball degrees of

freedom Si ∼ TrU(Ni)(W
2) acquire a non-trivial expectation value. According to (4), this is the

same as changing the A-periods of the differential wdv, which can be accomplished by varying

the function fn−1. However, we should also specify the embedding of this new Riemann surface

in R
5 ×S1, i.e. give new functions t and w on this Riemann surface. Since the glueball fields Si

are chiral superfields, one might be inclined to believe that the relevant deformations of t and

w should be holomorphic. As we will now argue, this turns out to be incorrect.

If t and w were still holomorphic after the deformation, one might believe that they would

still obey equations of the form (32) and (33). A simple count of the number of free parameters

shows that this cannot work. Once we specify W ′
m and the n A-periods of wdv, which we trade

off for the coefficients in fn−1, the number of free parameters remaining in equations (32) and

(33) is N+(N−n)+n+m+m−n = 2N+2m−n. The number of equations is 2N+2m, which

is larger than the number of free parameters, and the system will generically have no solution.

Of course, there could exist holomorphic deformations that don’t preserve the factorized form

(32) and (33). A naive counting argument shows that this is unlikely as well. If we consider a

compact Riemann surface Σ of genus g embedded in a Calabi-Yau of complex dimension d, then

a straightforward application of the index theorem yields that dimH0(Σ,N )− dimH1(Σ,N ) =

(d − 3)(1 − g), with N the normal bundle, so as long as dimH1(Σ,N ) = 0 the number of

holomorphic sections of the normal bundle is simply (d − 3)(1 − g). This is quite naive for

many reasons, first of all in our case the Riemann surface is noncompact, there may in general

be obstructions to lift a holomorphic section of the normal bundle to a finite holomorphic

deformation, and H1 may be nonzero. Nevertheless, if we apply this result to the present case,

we see that there are no holomorphic deformations, as d = 3.

If we ignore the coordinate t for the moment, then a count of parameters in equation (33)

shows that this equation does generically have a solution for arbitrary fn−1. Thus, there is no

problem defining a holomorphic function w on the Riemann surface, all problems are caused by

the coordinate t.
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To resolve this issue, it is helpful to slightly change perspective and to think of the one-forms

wdv and dt/t instead of the functions w and t. These have an interpretation as matrix model and

gauge theory resolvents as in equations (5) and (6), and it should be possible to determine them

off-shell. This was indeed done in [4]. Off-shell, wdv is some differential with periods around

the cycles of the Riemann surface that are directly related to the glueball vevs. Therefore, we

expect that once we go off-shell, the relation (33) is still satisfied, with fn−1 parametrizing the

deformations. In other words, in the v,w plane going off-shell simply corresponds to making a

holomorphic change of the Riemann surface.

The situation regarding t is more complicated. In a vacuum of the theory, the holomorphic

one-form dt/t has integer periods around all compact cycles of the Riemann surface. The fact

that the periods are integer means that log t is a well-defined function with values in R×S1 on the

Riemann surface (or put differently, this follows from the fact that H0(Σ,C∗) ≡ H1(Σ,Z)). Once

we go off-shell by a geometric deformation in the w, v plane, there no longer is a holomorphic

one-form with integer periods around all cycles. However, there is a non-holomorphic closed

one-form, which is defined in such a way that it has the same integer periods around both the A

and B cycles as dt/t had in the vacuum of the theory, and the same pole structure at infinity. We

will continue to call this one-form dt/t. It is indeed appropriate to call the form dt/t, because

there still will be a global R × S1 valued function log t associated to dt/t, and we will take

this function to define the embedding of the Riemann surface in the t-direction. However, this

embedding will no longer be holomorphic.

To summarize: to go off-shell we need to perform a holomorphic deformation in the w, v-

plane, and a non-holomorphic deformation in the t-direction, defined by a non-holomorphic

one-form with integer periods.

The non-holomorphic one-form dt/t is denoted by T0 in [4]. It is off-shell no longer equal

to the resolvent of the gauge theory. The latter is given by a holomorphic one-form T , which

has the same periods around the A-cycles as T0, but non-integer B-periods. On-shell, T and T0

coincide. We will discuss the fivebrane interpretation of T in section 6.

Another perspective on the five-brane is that it represents a pure geometrical dual of the setup

of [2]. In this setup one considers a noncompact Calabi-Yau with either wrapped branes or with

a non-trivial three-form flux with integer periods. Quantities computed using this non-compact

Calabi-Yau can be computed in terms of a Riemann surface. The three-form flux reduces to a

one-form on this Riemann surface with integral periods. This is exactly the same one-form as

dt/t. Therefore we see that after dualizing to M-theory, the flux becomes purely geometrical

and encodes the embedding of the fivebrane in the ambient space in the t-direction. The periods

of the flux become the winding numbers of the C
∗ variable t around the corresponding cycles.

3.2 Computing the superpotential

Now that we have learned how to deform the Riemann surface, we would like to consider the

off-shell computation of the superpotential for the fivebrane configuration, leaving a detailed

analysis of the non-holomorphic embedding t for the next section. Obviously, we expect to

recover the standard expression for the superpotential, but we would like to see how this comes

about.

We will use the notation in [5], where one thinks of Σ as a surface with a map Φ : Σ → X.
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We will take this to be an embedding, although our considerations should generalize as in [5].

This map is described by functions φi(λ), where λ are coordinates on Σ.

The expression that Witten postulated in [5] for the superpotential for M5 branes wrapping

a two-cycle is

W (Σ)−W (Σ0) =
1

2πi

∫

B

Ω (34)

where B is a 3-chain interpolating between Σ and Σ0, and Σ0 is an arbitrary reference surface in

the same homology class as Σ. In our coordinates, the holomorphic 3-form Ω is Ω = Ωijkdφ
i ∧

dφj ∧ dφk = Rdv ∧ dw ∧ dt/t. As a basis for one-forms dφi we will use dv,dw,d log t.

We will choose coordinates such that v is a good function on either sheet of the Riemann

surface, except at infinity where it has a pole. Minimizing the superpotential then amounts

to finding suitable meromorphic functions (t, w) on this surface. Notice that from the 5-brane

perspective there is nothing particular about this choice, and one could just as well interchange

the roles of v and w.

Before proceeding, we point out that the definition of the superpotential in (34) requires Σ0

and Σ to have the same asymptotics, otherwise a certain regularization at infinity is required.

In particular, this implies that (34) can only be used to study the variation under normalizable

deformations of the curve (though we will also allow log-normalizable deformations in the re-

mainder, but the final expression for the superpotential will be finite when we send the cutoff

to infinity even off-shell). Of course, we are also interested in the variation of the superpoten-

tial under non-normalizable deformations of the curve, such as those associated to variations of

the coefficients in the superpotential. To determine this variation, we need to supplement (34)

with some additional information, otherwise we could choose arbitrarily different Σ0 for each

non-normalizable deformation and the result for the superpotential would be arbitrary.

Note also that if Σ were compact, the superpotential would be zero for any holomorphic Σ.

The fact that we get a non-trivial superpotential as a function of holomorphic variables is due

to the non-compactness of Σ. (Another way in which this can happen is if there is a global

obstruction to certain holomorphic deformations, see e.g. [22]).

We now first consider the extrema of the superpotential (34). If we perform a generic

variation of the superpotential we obtain

2πi δW = 3

∫

Σ
Ωijkδφ

idφj ∧ dφk = 0 (35)

which we rewrite as ∫

Σ
Ωijδφ

i ∧ dφj = 0 (36)

where Ωij is a reduced 1-form on the Riemann surface, Ωij = Ωijvdv, and i runs over (log t, w).

On Σ−{P,Q}, this implies that w and t should holomorphic functions of v. This is already

enough to find the form of w and t, once we impose suitable boundary conditions on w and t,

and assume the underlying Riemann surface is hyperelliptic.

To see this, we notice that any holomorphic function u on the hyperelliptic Riemann surface

y2 = G2
n(v)+fn−1(v) can be written as u = A(v)+yB(v), with A and B meromorphic functions

of v. Clearly, u satisfies

(u−A(v))2 = B2(v)(G2
n(v) + fn−1(v)) (37)
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and after multiplication with a suitable polynomial we see that u must satisfy an equation of

the form

C(v)u2 +D(v)u+ E(v) = 0 (38)

with polynomials C,D,E with no common factors. In addition, there must exist a polynomial

F so that

D2(v)− 4C(v)E(v) = F 2(v)(G2
n(v) + fn−1(v)). (39)

If C(v) has a zero for some finite value of v, then at that value of v at least one of the two

solutions u of (38) would go to infinity, which contradicts the boundary condition that u should

be holomorphic in Σ− {P,Q}. Therefore, C(v) has to be a constant and can be taken equal to

one. The boundary conditions on t and w together with the constraint (39) then completely fix

the form of the remaining polynomials D(v) and E(v) for both t and w. Notice that t should not

be zero anywhere on Σ − {P,Q} and therefore one immediately sees that for t the polynomial

E should be a constant. A zero of t is not acceptable because t was related to x6 and x10 by

t = exp(−R−1(x6 + ix10)).

The final result for t and w is summarized in (19), (32) and (33).

To obtain the superpotential as a function of glueball superfield vacuum expectation values,

we should give an expression for it which is valid off-shell, i.e. once we turn on the deformations

discussed in section 3.1.

After a partial integration, and after dropping the contribution from Σ0 which is just a

constant, we obtain

Weff =
R

2πi

∫

Σ

dt

t
∧ wdv =

R

2πi

∫

Σ
η1 ∧ η2 , (40)

where we defined the two one-forms

η1 = wdv, η2 =
dt

t
. (41)

It is important to pause for a moment here to discuss the partial integration. In general, on

a non-compact Riemann surface, one has to determine what one keeps fixed at infinity (see e.g.

the discussion in [23] where the variable describing the size of disc instantons was kept fixed).

Here, what we would like to keep fixed is the coefficients in the tree-level superpotential, which

determine the asymptotics of w. Thus, we keep w fixed at infinity, and that is why we extract

w in (40), rather then e.g. log t.

The deformations can be parametrized by the coefficients in fn−1(v), that appears in the

defining equation

y2 = G2
n(v) + fn−1(v) (42)

for the Riemann surface. The polynomial fn−1(v) can be expanded as

fn−1(v) =

n−1
∑

i=0

fi v
i , (43)

where the coefficients fi with i = 0, . . . , n− 2 correspond to normalizable deformations, and the

coefficient fn−1 to a log-normalizable deformation2. Equivalently, we can use the A-periods of
2We use the same symbol for the polynomial fn−1(v) and its coefficients, fi, but hopefully this will not cause

any confusion.
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η1 = wdv to parametrize the deformation,

Si =
1

2πi

∮

Ai

wdv , (44)

where as usual the A-cycles are compact and run around the branch cuts of y in the v-plane as

determined by the hyperelliptic form y2 = G2
n + fn−1 of Σ, see appendix A. The A-periods of

η2 = dt/t are also integers,

2πiNi =

∮

Ai

dt

t
, (45)

which are the ranks of the gauge groups that remain classically unbroken in a particular classical

minimum of the superpotential. This can easily be seen by taking the classical limit ΛN=2 → 0

of the M5 brane configuration. In that case,

PN (v) →
n
∏

i=1

(v − ci)
Ni (46)

and so the periods are equal to 2πiNi.

The A-cycles are dual to noncompact B-cycles. We know from the special geometry relations

of Calabi-Yau manifolds that
∂F0

∂Si
=

1

2πi

∮

Bi

wdv , (47)

where F0 is the prepotential. If we in addition for the moment assume that the integer periods

of dt/t around the compact B-cycles all vanish, then the integrals of dt/t along all non-compact

B-cycles are all identical,

2πiτ =

∫

Bn

dt

t

0 =

∮

Bi

dt

t
, (48)

i = 1, . . . , n− 1, where τ will have the interpretation as the gauge coupling.

At this point we can invoke the Riemann bilinear identities, and rewrite (40) as

Weff = R
n
∑

i=1

(

Ni
∂F0

∂Si
− 2πiτSi

)

= R
n
∑

i=1

Ni
∂F0

∂Si
−RNS log

ΛN=2

Λ0
, (49)

which is precisely the Dijkgraaf-Vafa answer. The scale Λ0 appears because the integral of dt/t

around non-compact cycles needs to be regularized, see appendix A.

Actually, once we accept (40) and once we identify dt/t with the one-form that one obtains

by reducing the three-form flux on the dual type IIB side, we see that (40) is nothing but the

reduction of the type IIB superpotential
∫

H ∧ Ω to the Riemann surface. The minimalization

of (49) from this point of view has already been discussed in [24]. They showed that at the

minimum of (49) there exists a meromorphic function with an N -th order pole at P̃ and an N -

th order zero at P . Of course, this meromorphic function is nothing but t, and at the minimum

we recover the holomorphic fivebrane configuration of M-theory.

This discussion is somewhat imprecise, because (40) is still not quite well-defined as it stands,

and because there is in principle no reason why the periods of dt/t around the compact B-cycles
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should vanish. A more precise discussion and the interpretation of the periods of dt/t around

the B-cycles is given in [3, 4], see in particular section 7.1 of [4]. There, a regulated version

of (40) is defined; as it stands, (40) is problematic because both η1 and η2 have poles at P, P̃ .

To make it well-defined, one moves the poles of η1 = dt/t to nearby points P ′, P̃ ′. Next one

applies a suitable version of the Riemann bilinear identities for closed differentials with poles,

of the type discussed in section III.3 of [25]. This then gives a precise regulated definition of

(40), and one can again show quite generally that at the extremum dt/t becomes a meromorphic

differential. The only effect of the periods, τi, of dt/t around the compact B-cycles is an extra

term

W ′
eff = 2πiR

n−1
∑

i=1

τiSi (50)

in (49).

To see more directly that on-shell dt/t is the gauge theory resolvent we manipulate the

expression in (40) as follows. We first write it as

R

2πi

∫

Σ
w ∂̄ log t dvdv̄. (51)

Naively, this expression vanishes, as on-shell log t is a holomorphic function of v. However,

one has to be careful, as t has poles at infinity. We can rewrite this expression as follows:

Weff = −
R

2πi

∫

Σ
d(w log tdv) = −

R

2πi

∮

P

w log tdv

= −2RResv=∞
(

log t(W ′
m(v) + subleading)

)

= 2RResv=∞

(

∂ log t

∂v
Wm(v)

)

(52)

where we assume that P is the point where t ∼ vN , w ∼ 2W ′
m(v). In order for this to be the right

answer, we need that d log t is proportional to the gauge theory resolvent, see also (23), so that

this equation reduces to the classical superpotential evaluated at the right quantum vacuum.

Thus we see that these two ways to interpret (40) give two equivalent answers for the su-

perpotential, one off-shell as in Dijkgraaf-Vafa, the other directly on-shell in terms of the gauge

theory resolvent. Interestingly, the computations appearing here bear a close resemblance to

those that appear in the study [26, 27] of the integrable models that are needed to write down

the superpotentials of these theories once they are compactified on S1. At this point this seems

somewhat coincidental, as the degrees of freedom describe off-shell deformations are quite dif-

ferent depending on whether one compactifies the theory on a circle or not.

4 Off-shell embedding of the fivebrane

We have seen that in order to go off-shell we need to embed the M5-brane non-holomorphically

in R
5 × S1. The coordinate w remains a holomorphic function of v and is parametrized by the

n glueball vevs Si, or equivalently by the coefficients of fn−1(v). The coordinate t on the other
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hand becomes non-holomorphic, t = t(v, v̄), so that the periods

∮

Ai

T = 2πiNi

∮

Bi

T = 2πiτi (53)

Our goal in this section is to study in some more detail the form of T (or equivalently t) implied

by (53).

4.1 General procedure

The general idea to solve for (53) is to write T as a linear combinations of closed one-forms.

The number of one-forms compatible with the asymptotic behavior of T is 2n, so that the 2n

equations in (53) indeed completely determine T . There are two different convenient bases of

one-forms that we will use. The first one, which we will call the orthonormal basis, is useful for

many purposes since their A-periods are canonically normalized [25]. The second one, which we

will call a basis of monomials, is a more natural basis if we are interested in explicitly integrating

T and extracting the embedding coordinate t.

4.1.1 Orthonormal basis

As told, T (v, v̄) = dt
t
is off-shell a generic closed one-form with fixed periods (53). Expanding

upon a basis of holomorphic one-forms, we can write it as

T (v) = a τP,P̃ + b τ̄P,P̃ +

n−1
∑

i=1

(hiξi + liξ̄i) (54)

where ξi is a basis of holomorphic differentials {ξ1, . . . , ξn−1} normalized such that
∮

Ai
ξj = δij ,

and which vanish at infinity. In addition, the A-periods of τP,P̃ are chosen to vanish, and its

residue at P, P̃ are 1 and −1, respectively. For a particular definition of the periods, see appendix

A.

The differentials ξi are all of the form ui(v)
y

dv for some polynomials ui(v) of order at most

n−2. The differential τP,P̃ is of the form un−1(v)
y

dv with un−1(v) a polynomial of order n−1 with

leading coefficient one. In the monomial basis we will use the differential forms vi

y
dv instead.

Inserting (54) in (53) leads to a set of equations for a, b, hi, li. In this computation, one

has to bear in mind that the integral over the non-compact period Bn is defined as before, by

conveniently regularizing the period with Λ0. We find:

N = a− b

2πiNi = hi − li

2πiτi =

n−1
∑

j=1

(hiΠij − liΠ̄ij) + 2πia

∫ Λ0

Λ̃0

ξi − 2πib

∫ Λ0

Λ̃0

ξ̄i

2πiτ = a

∫ Λ0

Λ̃0

τP,P̃ + b

∫ Λ0

Λ̃0

τ̄P,P̃ +

n−1
∑

i=1

(

hi

∫ Λ0

Λ̃0

ξi + li

∫ Λ0

Λ̃0

ξ̄i

)

(55)
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where the last integral is the integral over the non-compact period, and we used that (see e.g.

[4])
1

2πi

∮

Bi

τP,P̃ =

∫ P

P̃

ξi . (56)

The above integrals are not easily computed in general, however, the leading Λ0-dependence is

easy to extract. The integrals
∫ Λ0

Λ̃0
ξi and

∫ Λ0

Λ̃0
ξ̄i only give finite contributions as Λ0 → ∞. The

large Λ0 behavior of
∫ Λ0

Λ̃0
τP,P̃ is

∫ Λ0

Λ̃0

τP,P̃ =
2

n+ 1
log

(

−4G2
n(Λ0)

fn−1(Λ0)

)

+O

(

log Λ0

Λ0

)

(57)

and therefore only involves the leading coefficients of the polynomials Gn(v) and fn−1(v) that

appear in the defining equation y2 = G2
n+fn−1 of the Riemann surface3. The only Λ0-divergence

in (55) is hence in the last equation

2πiτ = a log Λ2
0 + b log Λ̄2

0 + const +O(log Λ0/Λ0). (58)

On-shell, this equation is directly related to the running of the bare Yang-Mills coupling as a

function of the field theory UV cutoff: b = 0 and a = N is proportional to the one-loop beta

function of the field theory. The on-shell value of (57) can easily be computed using Gn = PN

and fn−1 = −Λ2N
N=2, which yields 2πiτ = log(−4Λ2N

0 /Λ2N
N=2). However, in order to obtain the

usual N = 1 answers, we will make a slightly different choice, namely

2πiτ = N log

(

−2Λ2
0

Λ2
N=2

)

(59)

which would correspond to an embedding of the form t2 − PN (v)t+ (−Λ2
N=2/2)

N . This change

is just a change of normalization, and from here on we will use the identification (59), which

also holds off-shell. If we combine (58) with (59) and with the equation a− b = N of (55), we

obtain

−N log Λ2
N=2 = b log(Λ2

0Λ̄
2
0) + const. (60)

This shows that b → 0 as Λ0 → ∞. In other words, the Riemann surface has a non-holomorphic

“tail”, which is relevant at the scale of the cutoff Λ0. As we send the cutoff to infinity, the

non-holomorphic tail is sent to infinity as well, but it does yield a finite contribution to physical

quantities for all values of the cutoff. Thus we should first compute the superpotential and then

send the cutoff to infinity, and not the other way around. Although b vanishes when the cutoff

is taken to infinity, the Riemann surface will in general remain non-homolomorphic in the limit:

as one can see from (55), the li will in general remain non-zero.

It is interesting to see how the remaining non-holomorphic deformations, parametrized by

li, disappear on-shell. We have already found that on-shell b = 0. Now, on-shell we also have

τi =

n−1
∑

j=1

NjΠij +N

∫ Λ0

Λ̃0

ξi =

n
∑

j=1

Nj

∫

B̂j

ξi (61)

3This assumes that the leading coefficient of fn−1 is nonvanishing. If it vanishes, and the leading behavior of

fn−1 is vm, then the same expression remains valid except that the prefactor should be changed to 2/(2n−m).
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where B̂j are the non-compact periods, B̂i = Bi +Bn for i = 1, . . . , n− 1, and we used the ma-

nipulations in [15]. Here we regard Si as the on-shell expectation value of the gluino condensate.

Combining this with equation (55), we get

n−1
∑

j=1

lj ImΠij = 0 . (62)

Notice that by construction ImΠij is positive definite. So it has no zero eigenvalues unless li = 0,

which is precisely the condition that all remaining non-holomorphic deformations vanish.

4.1.2 Monomial basis

The above expansion of the one-form dt/t in terms of canonically normalized one-forms on the

Riemann surface allows us to write its periods in terms of the period matrix of the Riemann

surface. However, if we want to write down an explicit expression for t, it is easier to expand it

in the monomial basis

ζi =
vi−1

y
dv, 0 ≤ i ≤ n− 1. (63)

The differentials τP,P̃ and ξi can be written as linear combinations of the ζi, and the non-

normalizable one-form ζn−1 appears only in τP,P̃ but not in the normalizable one-forms ξi.

Thus, the one-form dt/t is of the form

dt

t
= T (v, v̄) =

an−1(v)

y(v)
dv +

bn−1(v̄)

ȳ(v̄)
dv̄ (64)

where an−1(v) and bn−1(v̄) are polynomials in v that are determined by the conditions on the

periods. We will compute them in some explicit examples below.

It is straightforward to formally integrate t from the expression for T (v, v̄). We get:

t(v, v̄) = α(v)β(v̄) (65)

where α and β satisfy

α′(v)

α(v)
=

an−1(v)

y(v)

β′(v̄)

β(v̄)
=

bn−1(v̄)

ȳ(v̄)
(66)

and are formally given by

α(v) = exp

∫

an−1(v)

y(v)
dv

β(v̄) = exp

∫

bn−1(v̄)

ȳ(v̄)
dv̄ . (67)

There is however an important restriction on α and β, which comes from the requirement that

t must be a well-defined function of v and v̄. This means that the product α(v)β(v̄) must

be a well-defined function on the Riemann surface. This is a non-trivial requirement, as the

formal integrals (67) are not necessarily smooth single-valued functions for all values of v, and

in general they will not be. However, the products must be such that t itself is well-defined as

an embedding coordinate. Of course, this is equivalent to imposing that T has integer periods.
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4.2 Example

To illustrate the above formalism, we will now apply it to the case where the gauge group is

classically unbroken, so that it confines completely in the quantum theory. In this case the

Riemann surface has a single cut and two punctures.

The Riemann surface is given by the equation

y =
√

(v − c)2 − µ , (68)

The differential dt/t is therefore of the form

dt

t
=

a

y
dv +

b

ȳ
dv̄ (69)

which can be integrated to give the explicit expression for t(v, v̄)

t(v, v̄) = (v − c+ y)a(v̄ − c̄+ ȳ)b . (70)

We can compute the A-period and the regularized B-period of dt/t, and this leads (see also (55))

for the A-period to
1

2πi

∮

A

dt

t
= a− b = N, (71)

and for the non-compact B-period we get

2πiτ =

∫

B

dt

t
= log

(

Λ0 − c+ y(Λ0)

Λ0 − c− y(Λ0)

)a( Λ̄0 − c̄+ ȳ(Λ̄0)

Λ̄0 − c̄− ȳ(Λ̄0)

)b

. (72)

For large Λ0, this becomes

2πiτ = log

(

4Λ2
0

µ

)a(
4Λ̄2

0

µ̄

)b

+O(log Λ0/Λ0) (73)

For simplicity we will now also assume that the superpotential is quadratic,

W (Φ) =
1

2
g2(Φ − c)2, (74)

so that the differential wdv becomes

wdv = g2(v − c+ y)dv. (75)

The periods are

S =
1

2πi

∮

A

wdv = −
g2µ

2
(76)

and

∂F

∂S
=

∫

B

wdv =
g2
2πi

[

(Λ0 − c)2 −
µ

2
−

µ

2
log

(

4Λ2
0

µ

)]

+O(log Λ0/Λ0)

= W (Λ0) + S − S log

(

S

−2g2Λ2
0

)

. (77)
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The superpotential (49) is equal to

W = NS −NS log

(

S

−2g2Λ
2
0

)

− 2πiτS (78)

where we dropped a constant term proportional to W (Λ0). By comparing this to the on-shell

answer, we see that with our conventions the relation between τ and Λ0 should be

2πiτ = N log

(

−2g2Λ
2
0

Λ3
N=1

)

= N log

(

−2Λ2
0

Λ2
N=2

)

, (79)

where we used the scale matching Λ3
N=1 = g2Λ

2
N=2 between the high-energy N = 2 scale ΛN=2

and the low-energy N = 1 scale ΛN=1. This is exactly the reason why we chose the normalization

of τ as in (59). Using (79), the superpotential reduces to the standard Veneziano-Yankielowicz

result

W = RNS −RS log

(

SN

Λ3N
N=1

)

, (80)

and one recovers all familiar results for the N = 1 theory.

Combining (71), (72), (76) and (79), we obtain the following equation for b

b log

(

4Λ2
0Λ̄

2
0g

2
2

SS̄

)

= log

(

SN

Λ3N
N=1

)

. (81)

This result tell us that on-shell b = 0, since the right hand side of this equation is then identically

zero. However, off-shell b depends non-trivially on S, S̄, but also on Λ0. As we take the cutoff

to infinity, b becomes smaller and smaller, but this is an example where computing the super-

potential and taking the cutoff to infinity are not two commuting operations. One should first

regulate the problem, then compute everything, and finally take the cutoff to infinity. There

is therefore no simple non-holomorphic surface that gives the right answer without the need

to introduce a cutoff. Finite non-holomorphic surfaces describe situations where the glueball

superfields have expectation values of the order |S| ∼ |Λ0|
η for some finite value of η.

The case where the superpotential is arbitrary but the Riemann surface still has only one

cut can also be treated along similar lines, see e.g. [2] for more details about this situation.

In appendix B we illustrate the case of two cuts and comment on the general case.

4.3 Alternative variational problem

So far we have looked at the variational problem where deformations of the brane leave the

asymptotics of the brane fixed. That is, we considered normalizable deformations, which are

the ones of direct physical interest4. In principle, however, one can consider holomorphic but

non-normalizable deformations and see what they correspond to in the gauge theory.

This is now straightforward. In this case t is holomorphic, and w contains non-normalizable

deformations which correspond to changing the coefficients of the tree level superpotential. The

conditions (20) are then reformulated as follows:

P̂ 2
N − Λ2N = Ŝ2

N−n(Ĝn + f̂n−1)

Ŵ ′
m

2 +
ˆ̃
fm−1 = Ĥ2

m−n(Ĝ
2
n + f̂n−1) . (82)

4As remarked, because the Riemann surface was non-compact we actually had to include a non-holomorphic

deformation with a logarithmic divergence.
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where again the hat denotes polynomials whose coefficients are to be determined from the

equations. Again, we need at least n free undetermined coefficients to vary the Si’s. A simple

counting of equations shows that this is possible.

The above describe the only allowed holomorphic deformations if we want to keep the poly-

nomial behavior of t and w in v at infinity unmodified (even though we change the coefficients

of w), and without introducing additional singularities in t. In conclusion, varying the Si’s will

now mean varying the coefficients of W ′
m.

This is of course consistent with the fact that the glueball superfields can be obtained from

the effective superpotential, 〈Si〉 ∼
∂Weff
∂τi

, as the latter contains the coefficients of W ′
m. In view

of the partial integration that we did on Witten’s original expression for the superpotential, it

would be interesting to re-analyze the superpotential from this alternative perspective. Notice

also that the non-normalizable deformations obtained by changing the tree-level superpotential

of the high-energy theory are reminiscent of the non-normalizable deformations in AdS that

correspond to the sources that couple to operators in the CFT.

5 The superpotential and the (2,0) theory

One would like to see if the superpotential can be obtained directly in the (2,0) theory living

on the worldvolume of the fivebrane, as was suggested in [7]. For M5-brane configurations with

N = 2 supersymmetry, where only one of the scalars t or w is active, it is well known [12, 14]

that the equations of motion for the gauge fields on the 5-brane correctly reproduce the Kähler

potential of the N = 2 SYM theory. It is interesting to see in detail whether this relation

generalizes to the N = 1 case. Of course, once we break supersymmetry we do not expect the

Kähler potential to agree, but we should still be able to reproduce the F-terms and in particular

the superpotential.

So in order to see if we can we get the above superpotential directly in the (2,0) theory, let

us briefly recall what our brane construction corresponds to in terms of the field content on the

brane. The (2,0) tensor multiplet consists of a (1,0) tensor multiplet and a hypermultiplet. The

bosonic field content of the (1,0) tensor multiplet is an antisymmetric 2-form potential BMN

with self-dual three-form field strength, and a real scalar φ. The hypermultiplet contains four

real scalars which can be combined into two complex scalars φi, i = 1, 2. Thus, in all there

are five real scalars which describe the transverse coordinates to the brane, in our set-up t, w,

and X9 which we set to zero. Thus only two complex scalars are non-trivial, and these combine

together with the fermions in a four-dimensional hypermultiplet, which we will denote by Φi,

i = 1, 2, following the notation used earlier for the scalars. However, now one should interpret

these as two N = 1 superfields that make up an N = 2 hypermultiplet. By construction, all

fields in the tensor multiplet are trivial and set to constant values so we will ignore them for the

time being.

To see how to get the superpotential, we can follow the recipe in [28, 29] of rewriting the

6-dimensional fields in terms of an infinite family of 4-dimensional N = 1 superfields labeled by

a continuous parameter, which in this case will be the complex coordinate v which parametrizes

the dependence of the fields on the internal manifold Σ. Using the expressions in [28], the scalar
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part of the action reads5

S[φi] =

∫

d4xd2v d2θΦ1∂̄Φ2 . (83)

There is a choice here which complex coordinate we associate with Φ1 and which one with Φ2.

On a compact Riemann surface both choices are equivalent, but here we are dealing with a

noncompact surface and the two choices are different. As we explained before, below (40), this

is determined by the boundary conditions, and therefore we will associate Φ1 with w and Φ2

with log t. With this choice we now recognize that (83) is the same as our previous expressions

(40) and (51) for the superpotential. Notice that in (83) we can replace ∂̄ log tdv̄ by d log t, since

the holomorphic piece in d log t does not contribute to the integral.

Clearly, it would be interesting to study this deconstruction in more detail and to see whether

other terms in the effective action have an equally nice geometric interpretation.

6 The resolvent and the gauge kinetic terms

In this section we briefly comment on some other physical quantities, namely the gauge theory

resolvent and its Kähler potential, and their relation to the fivebrane theory.

On-shell, the gauge theory resolvent was simply given by dt/t, see equations (4)–(6). Off-

shell, this can no longer be true, since the gauge theory resolvent is holomorphic whereas t

becomes non-holomorphic. It is however easy to see from (5) that the A-periods of the gauge

theory resolvent will off-shell still be Ni. Therefore, the gauge theory resolvent is given by the

unique holomorphic one-form whose A-periods are Ni. The B-periods of the gauge theory resol-

vent will no-longer be integer, but that is not important since the gauge theory resolvent need

not have a straightforward geometrical interpretation. To compute the gauge theory resolvent

we can either construct directly a suitable one-form, or we can use

Trgaugetheory

(

dv

v − Φ

)

=
∑

i

Ni
∂

∂Si
wdv (84)

which follows from (5) and (6), or equivalently we can see this directly from (4). It would be

interesting to understand the gauge theory resolvent more directly from the fivebrane point of

view.

Let us next consider the Kähler potential of the low-energy effective theory on the five-branes,

as considered in [12, 14]. We will mostly follow the computation of [12]. The Kähler potential

is not protected by supersymmetry and therefore we don’t expect the answer that we find to

be in agreement with the Kähler potential in the pure gauge theory. Nevertheless, it may share

some qualitative features with the gauge theory answer and it is therefore worth exploring.

Since the off-shell fivebrane configuration is non-holomorphic, the induced metric on it will

not be proportional to dvdv̄, but also have dvdv and dv̄dv̄ components. In principle, it would

be nicer to introduce different coordinates on the Riemann surface in terms of which the metric

is in conformal gauge, but in practice it may be difficult to explicitly construct such coordinates.

5We are using a linearized version of the Dirac-Born-Infeld action here, keeping only the quadratic terms. See

also the next section.
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To write the kinetic term for the glueball fields, we write the metric in the internal directions

as

GpqdX
pdXq = dvdv̄ + dwdw̄ +R2d log td log t̄. (85)

We will also write vα = (v, v̄), and for the Riemann surface take a family that varies over R4, i.e.

one where the glueball fields are non-constant. In other words, we take as our Riemann surface

Xp ≡ Xp(v, v̄, Si(xµ), S̄i(xµ)).

We define

Ep
µ = ∂µS

i∂iX
p + ∂µS

ī∂īX
p

gαβ = ∂αX
pGpq∂βX

q (86)

and

Hpq = Gpr∂αX
rgαβ∂βX

sGsq. (87)

The metric gαβ is the induced metric on the Riemann surface. The kinetic terms for Si, S̄i, as

obtained from the Born-Infeld action, now read

Skin =

∫

d4xd2v
√

− det gαβ η
µνEp

µ(Gpq −Hpq)E
q
ν . (88)

This is a rather complicated expression due to the fact that the fivebrane configurations are non-

holomorphic. A puzzling feature is the appearance of kinetic terms of the form ∂µS
p∂µSq that

include two holomorphic fields S (and similar terms with two antiholomorphic glueball fields).

In an N = 1 theory, one would expect only terms of the form ∂µS
p∂µS̄q. Here, the fivebrane

configuration explicitly breaks N = 1 supersymmetry, and this is why terms like ∂µS
p∂µSq are

being generated. It is possible that this is an artifact of the fivebrane theory, or that due to

some mysterious cancellation these terms disappear after integrating over the Riemann surface.

In any case, we cannot derive a Kähler potential from (88). The only way to obtain a Kähler

potential from (88) is to ignore all v̄, S̄ dependence in log t. That leads to a Kähler potential

K ∼

∫

d2v k∂v∂v̄k (89)

where

k = |v|2 + |w|2 +R2| log t|2 (90)

is the space-time Kähler potential, now viewed as a function of v, v̄, S, S̄. There may be some

relation between the field theory Kähler potential and (89), but there is no a priori reason to

believe such a relation exists.

7 Conclusion

In this paper we have argued that the off-shell deformations of the M5-brane that correspond to

turning on non-trivial expectation values for the glueball fields are particular non-holomorphic

ones. We have expressed these in terms of the periods of differentials made out of the embedding

coordinates and used this to compute the superpotential of these theories using the definition
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of the superpotential given by Witten in [5]. This definition involves the integral over a three-

manifold that bounds two different Riemann surfaces and can be viewed as computing a domain

wall tension, i.e. the difference between the value of the superpotential at two different vacua.

By partial integration, it can be written as an integral over a two-form on Σ; such a form was

also used in e.g. [23, 22, 30]. This form has many interpretations. It can be viewed as the

contribution of a 6d hypermultiplet to the superpotential as we discussed above, equivalently

one can obtain it from a dimensional reduction of the type IIB superpotential
∫

H ∧ Ω. All

these give the same answer for the superpotential. We also saw that after carefully taking the

boundary conditions into account, we could recover both the DV-version of the superpotential,

as well as a more direct description in terms of the gauge theory resolvent.

Altogether, we see that the single M5-brane picture provides a setup where everything has

become geometrical, and in particular all quantum information has become geometrical. The

computations bear a close resemblance to the computations in IIB string theory with fluxes

where one employs the superpotential
∫

H ∧Ω. In fact, the IIB string theory and the M5-brane

configuration are T-dual to each other; under this T-duality, non-trivial IIB geometry and flux

are replaced by a trivial background geometry with a non-trivial brane configuration.

The approach in [1] is somewhat intermediate, in that part of the quantum dynamics is

encoded in the matrix model that arises. It is not quite clear in what sense this approach,

which uses topological string theory, is dual to or can be embedded directly in the M5-brane

setup. The action of the matrix model itself is similar to the IIA brane configuration, in that

it only has classical information, and doing the matrix integral is analogous to the lift of the

IIA configuration to M-theory. The precise relation between the M5-brane physics and the

topological string theory is clearly something worth pursuing further.

There are many directions in which the results of this paper can be generalized. It should

be relatively straightforward to generalize these results to other gauge theories for which a IIA

brane description is known, such as theories with matter, quiver gauge theories and theories

with SO(N)/SP (N) gauge groups. It would certainly also be worthwhile to see to what extent

non-holomorphic deformations of other wrapped brane configurations are physically relevant.

We also believe that this work should have some relation to and implications for more general

topological string backgrounds such as the the ones considered in [31, 32], as well as for the

approach to N = 2 theories advocated in [33]. We hope to return to some of these issues in the

near future.

Acknowledgments

We would like to thank Robbert Dijkgraaf and Annamaria Sinkovics for collaboration and useful

discussions during the early stages of this work. We would also like to thank Mina Aganagic,

Tim Hollowood and Cumrun Vafa for valuable discussions and suggestions. SdH thanks the

Simons Workshop on Mathematics and Physics, where part of this work was carried out, and

the Institute for Theoretical Physics of the University of Amsterdam for hospitality.

This material is based upon work supported by the National Science Foundation under Grant

No. PHY-0099590. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of the National

25



Science Foundation.

A Definition of the period integrals

Integrals along paths going from one branch of the Riemann surface to the other are a priori not

well defined, as one in addition needs to specify the path. Here we briefly give our definition of

these integrals by a definition of the A- and B-periods that we use in practical computations.

A basis of compact A-cycles is provided by the cycles Ai, i = 1, . . . , n− 1, encircling a single

cut in the counterclockwise direction without intersecting. In our applications, however, we also

need to take into account the points at infinity, P and P̃ , and so we will have to supplement this

with integrals around P . Notice that in our applications the sum over all A-periods, including

An, can be shown to be equal to the contour around P by a contour deformation. This (infinite)

contour is defined by Λ0 → e2πiΛ0, where Λ0 is a regulator that we take to infinity at the end.

Concretely, we compute A-periods by taking the contours counterclockwise and defining the

integrals with the appropriate signs, depending on which branch we are on:

∮

Ai

=

∫ c̃+i

c̃−i

+

∫ c−i

c+i

, (91)

i = 1, . . . , n. In most applications we encounter, these integrals add up to give a factor of 2.

We can choose a set of compact B-cycles {B1, . . . , Bn−1} defined as the cycles going from

one cut to the other in the clockwise direction:

∮

Bi

=

∫ c−i+1

c+i

+

∫ c̃+i

c̃−i+1

, (92)

i = 1, . . . , n − 1. Also here we need to supplement this with a non-compact period, which we

take as going from P̃ to P passing through c+n and appropriately regularized:

∫

Bn

=

∫ c̃+n

Λ̃0

+

∫ Λ0

c+n

. (93)

In the case where n = 1, this will be the only period and we will call it simply B.

B The case with more than one cut

In this appendix we illustrate the method outlined in section 4 for surfaces with more cuts. We

look at the case corresponding to the symmetry breaking pattern U(N) → U(N1) × U(N2) in

the field theory, or n = 2. So we write

y2(v) = (v − c−1 )(v − c+1 )(v − c−2 )(v − c+2 ) (94)

In this case we will need the following two basic integrals in order to solve for T :
∫

dv

y(v)
∫

vdv

y(v)
(95)

26



These integrals are given in terms of elliptic integrals of the first and third kind6.

For simplicity we will work in the classical limit, where the distance between the two cuts is

much larger than their length, and we take c±i = ci±µi, where µ is a small parameter related to

the coefficients fi. Our approximation will be an expansion in µi
c1−c2

. In the field theory, since

roughly µ ∼ Λ2N
N=2, this corresponds to the classical limit of small mass scale ΛN=2.

We can write an integral over the first cut as:

∮

A1

dv

y(v)
=

2

c1 − c2

∫

√
µ1

−√
µ1

dx
√

x2 − µ1

+O

(

µ1

c1 − c2

)

= −
2πi

c1 − c2
+O

(

µ1

c1 − c2

)

(96)

where we took the period in the counterclockwise direction. Obviously, there is a similar con-

tribution around A2. We also need the following integral:

∮

Ai

vdv

y(v)
= ci

∮

Ai

dv

y(v)
+O

(

µi

ci − cj

)

. (97)

Writing

T = (a0 + a1v)
dv

y(v)
+ (b0 + b1v̄)

dv̄

ȳ(v̄)
(98)

and taking into account all contributions we get

Ni = −
a0 + a1ci
ci − cj

+
b0 + b1c̄i
c̄i − c̄j

+O

(

µ

ci − cj

)

(99)

where obviously j 6= i.

The Λ0-dependence of the non-compact period B2 can be computed as before in powers of

log Λ0/Λ0. We get:

∫ Λ0

Λ̃0

T = 2a1 log Λ0 + 2b1 log Λ̄0 +O(log Λ0/Λ0) = 2πiτ. (100)

This, together with (99) and the integral over B1, which is again given by an elliptic integral,

determines a0, a1, b0 and b1 uniquely.

Let us make some comments about the general case, U(N) →
∏n

i=1 U(Ni). As the genus

of the curve goes up, the integrals that one needs to solve get more and more involved. It is

however not hard to see how the general case works. One needs to impose:
∮

Ai

an−1(v)

y(v)
dv +

∮

Ai

bn−1(v̄)

ȳ(v̄)
dv̄ = 2πiNi

∮

Bi

an−1(v)

y(v)
dv +

∮

Bi

bn−1(v̄)

ȳ(v̄)
dv̄ = 2πiτi (101)

both for the normalizable periods and for the non-normalizable one. The integrals over the

normalizable periods are integers, as follows from the fact that T is on-shell a meromorphic
6As an illustration, it is useful to first consider the case where the minima ci are such that we can use the follow-

ing parametrization: y =
√

(t2 − µ1)(t2 − µ2), which is consistent with the fact that fn−1(v) has two coefficients

in this case. Using rescalings we can rewrite the integrals over the periods in terms of
∫ 1

0
dv√

(1−v2)(1−k2v2)
= K(k)

and
∫ 1/k

1
dv√

(1−v2)(1−k2v2)
= iK′(k), where K and K′ are the usual complete elliptic integrals of the first kind

[34]. The second integral in (95) can be explicitly computed in terms of a simple logarithm.
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differential that is written locally as d log t where t is the embedding coordinate. And even

though T (v, v̄) takes on a similar form by the relations (66), it is crucial that α(v) and β(v̄)

are not rational functions. Indeed, as we have seen explicitly, the exponents a and b are not

integers, but they can take any values as functions of N,Λ0, µ, and c.

It is now useful to see whether the conditions (101) have solutions for arbitrary values of n.

One can easily see that this is the case. They form 2n conditions, and we have 2n coefficients,

{a1, . . . , an} and {b1, . . . , bn}, to adjust, so the solution, if there is one, is unique. It is thus

crucial that we also include one off-shell log-normalizable deformation bn−1.

On-shell, the B-periods are fixed once the complex structure fi, i = 0, . . . , n− 1, is fixed. In

that case we can set all bn−1(v̄) = 0, and we are left with the n parameters of an−1(v), as we

showed in section 4.

The general case can be done without much more effort. If one wants to stay completely

general, the expressions become complicated elliptic integrals. However, one can easily approx-

imate these integrals in the semi-classical limit we have been considering before. We will skip

details and just quote the result for the glueball expectation values:

Si = Hm−n(ci)
fn−1(ci)

2G′
n(ci)

, (102)

Using the monodromy argument in [2] one also finds

f̃m−1 = 2

n
∑

i=1

Si =

n
∑

i=1

Hm−n(ci)
fn−1(ci)

G′
n(ci)

. (103)

One can compute the A-periods of T and the leading Λ0-dependence of the B-periods of T and

wdv similarly.
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