8 research outputs found

    Ligand-regulated oligomerisation of allosterically interacting proteins

    Get PDF
    The binding of ligands to distinct sites at proteins or at protein clusters is often cooperative or anti-cooperative due to allosteric signalling between those sites. The allostery is usually attributed to a configurational change of the proteins from a relaxed to a configurationally different tense state. Alternatively, as originally proposed by Cooper and Dryden, a tense state may be achieved by merely restricting the thermal vibrations of the protein around its mean configuration. In this work, we provide theoretical tools to investigate fluctuation allostery using cooling and titration experiments in which ligands regulate dimerisation, or ring or chain formation. We discuss in detail how ligands may regulate the supramolecular (co)polymerisation of liganded and unliganded proteins

    Two-year clinical follow-up of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN): Design and statistical analysis plan of the extended follow-up study

    Get PDF
    Background: MR CLEAN was the first randomized trial to demonstrate the short-term clinical effectiveness of endovascular treatment in patients with acute ischemic stroke caused by large vessel occlusion in the anterior circulation. Several other trials confirmed that endovascular treatment improves clinical outcome at three months. However, limited data are available on long-term clinical outcome. We aimed to estimate the effect of endovascular treatment on functional outcome at two-year follow-up in patients with acute ischemic stroke. Secondly, we aimed to assess the effect of endovascular treatment on major vascular events and mortality during two years of follow-up. Methods: MR CLEAN is a multicenter clinical trial with randomized treatment allocation, open-label treatment, and blinded endpoint evaluation. Patients included were 18 years or older with acute ischemic stroke caused by a proven anterior proximal artery occlusion who could be treated within six hours after stroke onset. The intervention contrast was endovascular treatment and usual care versus no endovascular treatment and usual care. The current study extended the follow-up duration from three months to two years. The primary outcome is the score on the modified Rankin scale at two years. Secondary outcomes include all-cause mortality and the occurrence of major vascular events within two years of follow-up. Discussion: The results of our study provide information on the long-term clinical effectiveness of endovascular treatment, which may have implications for individual treatment decisions and estimates of cost-effectiveness. Trial registration:NTR1804. Registered on 7 May 2009; ISRCTN10888758. Registered on 24 July 2012 (main MR CLEAN trial); NTR5073. Registered on 26 February 2015 (extended follow-up study)

    Automated entire thrombus density measurements for robust and comprehensive thrombus characterization in patients with acute ischemic stroke

    Get PDF
    Background and Purpose: In acute ischemic stroke (AIS) management, CT-based thrombus density has been associated with treatment success. However, currently used thrombus measurements are prone to inter-observer variability and oversimplify the heterogeneous thrombus composition. Our aim was first to introduce an automated method to assess the entire thrombus density and then to compare the measured entire thrombus density with respect to current standard manual measurements. Materials and Method: In 135 AIS patients, the density distribution of the entire thrombus was determined. Density distributions were described usingmedians, interquartile ranges (IQR), kurtosis, and skewedness. Differences between themedian of entire thrombusmeasurements and commonly applied manualmeasurements using 3 regions of interest were determined using linear regression. Results: Density distributions varied considerably with medians ranging from 20.0 to 62.8 HU and IQRs ranging from 9.3 to 55.8 HU. The average median of the thrombus density distributions (43.5 ± 10.2 HU) was lower than the manual assessment (49.6 ± 8.0 HU) (p<0.05). The difference between manual measurements and median density of entire thrombus decreased with increasing density (r = 0.64; p<0.05), revealing relatively higher manual measurements for low density thrombi such that manual density measurement tend overestimates the real thrombus density. Conclusions: Automatic measurements of the full thrombus expose a wide variety of thrombi density distribution, which is not grasped with currently used manual measurement. Furthermore, d

    Connectedness percolation of fractal liquids

    Get PDF
    We apply connectedness percolation theory to fractal liquids of hard particles, and make use of a Percus-Yevick liquid state theory combined with a geometric connectivity criterion. We find that in fractal dimensions the percolation threshold interpolates continuously between integer-dimensional values, and that it decreases monotonically with increasing (fractal) dimension. The influence of hard-core interactions is significant only for dimensions below three. Finally, our theory incorrectly suggests that a percolation threshold is absent below about two dimensions, which we attribute to the breakdown of the connectedness Percus-Yevick closure

    Geometric percolation of hard-sphere dispersions in shear flow

    Get PDF
    We combine a heuristic theory of geometric percolation and the Smoluchowski theory of colloid dynamics to predict the impact of shear flow on the percolation threshold of hard spherical colloidal particles, and verify our findings by means of molecular dynamics simulations. It appears that the impact of shear flow is subtle and highly non-trivial, even in the absence of hydrodynamic interactions between the particles. The presence of shear flow can both increase and decrease the percolation threshold, depending on the criterion used for determining whether or not two particles are connected and on the PĂ©clet number. Our approach opens up a route to quantitatively predict the percolation threshold in nanocomposite materials that, as a rule, are produced under non-equilibrium conditions, making comparison with equilibrium percolation theory tenuous. Our theory can be adapted straightforwardly for application in other types of flow field, and particles of different shape or interacting via other than hard-core potentials

    A kinetic model for the impact of packaging signal mimics on genome encapsulation

    Get PDF
    Inspired by recent experiments on the spontaneous assembly of virus-like particles from a solution containing a synthetic coat protein and double-stranded DNA, we put forward a kinetic model that has as main ingredients a stochastic nucleation and a deterministic growth process. The efficiency and rate of DNA packaging strongly increase after tiling the DNA with CRISPR-Cas proteins at predesignated locations, mimicking assembly signals in viruses. Our model shows that treating these proteins as nucleation-inducing diffusion barriers is sufficient to explain the experimentally observed increase in encapsulation efficiency, but only if the nucleation rate is sufficiently high. We find an optimum in the encapsulation kinetics for conditions where the number of packaging signal mimics is equal to the number of nucleation events that can occur during the time required to fully encapsulate the DNA template, presuming that the nucleation events can only take place adjacent to a packaging signal. Our theory is in satisfactory agreement with the available experimental data
    corecore