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Article
A kinetic model for the impact of packaging signal
mimics on genome encapsulation
Ren�e de Bruijn,1,2,* Pieta Cornelia Martha Wielstra,1 Carlos Calcines-Cruz,3 Tom van Waveren,1

Armando Hernandez-Garcia,3 and Paul van der Schoot1
1Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; 2Institute for Complex Molecular Systems,
Eindhoven University of Technology, Eindhoven, the Netherlands; and 3Department of Chemistry of Biomacromolecules, Institute of
Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
ABSTRACT Inspired by recent experiments on the spontaneous assembly of virus-like particles from a solution containing a
synthetic coat protein and double-stranded DNA, we put forward a kinetic model that has as main ingredients a stochastic nucle-
ation and a deterministic growth process. The efficiency and rate of DNA packaging strongly increase after tiling the DNA with
CRISPR-Cas proteins at predesignated locations, mimicking assembly signals in viruses. Our model shows that treating these
proteins as nucleation-inducing diffusion barriers is sufficient to explain the experimentally observed increase in encapsulation
efficiency, but only if the nucleation rate is sufficiently high. We find an optimum in the encapsulation kinetics for conditions where
the number of packaging signal mimics is equal to the number of nucleation events that can occur during the time required to fully
encapsulate the DNA template, presuming that the nucleation events can only take place adjacent to a packaging signal. Our
theory is in satisfactory agreement with the available experimental data.
SIGNIFICANCE The rate and efficiency of the encapsulation of double-stranded DNA by synthetic coat proteins was
recently found to be strongly enhanced by the presence of specifically positioned protein molecules on the DNA that mimic
so-called packaging signals. We present a kinetic theory based on the initial stochastic nucleation and subsequent
deterministic elongation of the protein coat with the aim of explaining these findings. We find that equidistantly placed
nucleation sites that also act as diffusion barriers on the DNA have profound and non-trivial effects, and they can either
slow down or speed up encapsulation depending on how fast nucleation is on the timescale of the elongation process. Our
findings may contribute to the rational design of linear virus-like particles.
INTRODUCTION

Considering that the filamentous or rod-like morphology is
the second most prevalent among all known viruses, we
would not expect the packaging of a viral genome by coat
proteins in a linear particle to be a non-trivial physics prob-
lem (1). Simply relying on the adsorption of coat proteins
onto the genome is not sufficient to package it effectively,
not even if the adsorbed proteins attract each other, e.g.,
by the presence of hydrophobic patches, by hydrogen
bonding, or by ionic interactions mediated by multivalent
ions, which in principle helps to increase the bound fraction
of proteins (2,3). The reason for this is that the helical as-
sembly of the proteins around its genome is in essence a
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one-dimensional process, even though the virus is a three-
dimensional object. The helical arrangement of coat
proteins in linear structures seems to be strongly preferred,
presumably to produce (quasi-)equivalent environments to
the proteins that themselves are not symmetrical objects
(4–6). Quasi-one-dimensional assembly on a DNA (or
RNA) template is dominated by entropy and hence prone
to form ‘‘defects,’’ i.e., naked sites on the template that
make the template vulnerable to nucleases (3,7).

In an attempt to rationalize the successful and complete
assembly of tobacco mosaic virus (TMV)—probably one
of the most studied viruses to date—Kraft and collaborators
relied on a so-called zipper model, in which assembly
can only start by the binding of a protein at a preferred po-
sition on the polynucleotide (8). For TMV, this preferred
location on the genome is called the origin of assembly
sequence or OAS, but in the context of virology it is referred
to as a packaging signal (9). The second crucial ingredient in
Biophysical Journal 121, 2583–2599, July 5, 2022 2583
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the model is a form of allostery, where the required confor-
mational switching of the first bound coat protein catalyzes
that of subsequently bound proteins, resulting in cooperative
assembly (5). In this case, elongation occurs by subsequent
binding to already bound proteins, and the genome is pack-
aged in a zipper-like fashion (10).

The zipper model successfully explains how the free en-
ergy cost required for binding the first protein (or assembly
of proteins) favors mixtures of completely packaged and
naked templates over a mixture of partially covered tem-
plates, which would seem evolutionarily beneficial (8,10).
Notably, the model does not only capture these equilibrium
conditions but also captures the kinetics of the whole assem-
bly process. Based on the insights provided by this model,
Hernandez-Garcia and collaborators designed a tri-block
polypeptide that functions as an artificial coat protein, pack-
ages both single- and double-stranded DNA molecules with
high efficiency, and protects these against breakdown by nu-
cleases (3). Synthetic virus-like particles made using these
designer coat proteins have already been found to be prom-
ising candidates for therapeutic applications (11,12).

Crucial is the presence of the middle (assembly) block of
the peptide that needs to undergo a conformational change
from a disordered to b-sheet or b-roll configuration in or-
der to bind to another protein and provides allosteric con-
trol over the assembly process (13,14). The kinetic version
of the zipper model also almost quantitatively describes the
assembly kinetics of the encapsulation of the DNA by the
artificial coat proteins of Hernandez-Garcia and collabora-
tors (10). This lends strong support for allosteric zippering
as a generic mechanism for overcoming the detrimental
impact of configurational entropy in quasi-one-dimensional
self-assembly processes involving molecular units and a
template (7).

While the artificial coat protein (referred to as C-S10-B)
does not have a specific preference for any nucleotide
sequence, it commences the packaging of the DNA at one
of the ends unless the DNA is sufficiently long, in which
case assembly may start at any point along the chain (3).
It seems that the ends act as (unintended) nucleation sites.
Translational (or configurational) entropy can only render
these ineffective if the template is sufficiently long and
the entropy gain by random binding becomes appreciable.

In recent experiments, Calcines-Cruz and collaborators
investigated whether introducing CRISPR-Cas12a pro-
teins—which bind on prescribed positions on the DNA
and act as barriers for the linear diffusion of C-S10-B along
the DNA—enhances packaging efficiency. These proteins
were also chemically linked to the aforementioned assembly
block (S10) of the artificial coat protein, in which case the
barriers would become a bona fide packaging signal (15).
Remarkably, attaching both proteins to one or more posi-
tions along the DNAmakes the assembly not only more effi-
cient but also faster, and more so if the Cas12a proteins can
actually bind the artificial coat proteins (via the S10 block).
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The effect becomes stronger with increasing number of
bound Cas12a proteins albeit, as it turns out, with diminish-
ing returns.

This is actually somewhat counter-intuitive, because
breaking up a long chain into (seemingly) independent
shorter portions should make the assembly less efficient,
not more efficient, according to the thermodynamic zipper
model (8,10,16). This, of course, calls into question the val-
idity of the zipper model for the problem at hand. On the
other hand, it would presume that thermodynamics strictly
applies for the problem in hand, even though it could well
be dominated by kinetics rather than thermodynamics.
Indeed, it turns out that once assembled, the DNA-protein
complexes and even protein-protein complexes that under
appropriate conditions form in the absence of DNA are sta-
ble against dilution. This implies that they are easier to
assemble than to disassemble (17). Incidentally, this is
also true for icosahedral viruses (18). In principle, we would
need to modify the kinetic zipper model of Kraft et al. (8),
and its generalization by Punter et al. (10), to account for
the influence of multiple ‘‘barriers’’ or packaging signal
mimics, and find out whether the model survives confronta-
tion with the experimental data of Calcines-Cruz and collab-
orators (15).

Here, we opt for a simpler version that has the same basic
premise but which, in contrast to the original model, allows
for analytical evaluation and relatively straightforward com-
parison with experiments. Our simplified model presumes a
Poissonian stochastic nucleation process for the (equidis-
tant) nucleation sites we define on a quasi-one-dimensional
template. Once binding has taken place, the model assumes
elongation to occur deterministically and irreversibly, i.e.,
with a fixed and constant rate. The nucleation and elonga-
tion rates are phenomenological parameters in our model.
In reality, the nucleation sites can be distributed heteroge-
neously along the DNA (or RNA) template or can have
different nucleation rates associated with them (19,20).
We do not take this into account for the sake of simplicity,
as we find that the current simplified description can already
explain most of the observed phenomena.

As our model ignores any stochasticity of the elongation
process, it ignores the statistical nature of the assembly and
disassembly steps during the elongation stage of the growth
of the protein coat encapsulating its cargo. This we deem
appropriate if the thermodynamic driving force for assembly
is sufficiently strong. In addition, we do not explicitly model
how precisely proteins attach to the growing end, i.e., either
directly from solution or by diffusion of proteins weakly
bound to part of the template not yet encapsulated (21).

The model we present might perhaps seem too simple.
This is, however, one of its main strengths. We find that
our results depend on only a single dimensionless param-
eter, yet still show many of the essential features of the
experiments. Indeed, despite these simplifications, the pre-
dictions of our simplified zipper model agree reasonably
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well with the experimental observations of (15). The model
actually makes a number of testable predictions. First,
according to the model, the average protein coverage of ge-
netic material is a monotonically increasing function of the
number of packaging signals for any nucleation and elon-
gation rate. Second, and perhaps counter-intuitively, this
causes either a decrease or an increase in the mean time
for complete encapsulation with an increasing number of
packaging signals. This depends on the ratio between the
elongation rate and the nucleation rate. Third, we find
that this mean time has an optimal value for some number
of packaging signals, which is proportional the aforemen-
tioned ratio of rates.

In the remainder of this paper, we first introduce our
nucleation-and-growth model for the self-assembly kinetics
and put forward a dimensionless nucleation rate that acts as
the sole relevant control variable. Our model predicts the ex-
istence of three temporal regimes in the encapsulation pro-
cess. For early times, template coverage scales quadratically
with time. For a sufficiently low or high nucleation rate, an
intermediate linear regime emerges, while for the late stages
we find the template coverage to approach exponentially the
state of complete coverage. Next, we introduce the barriers
or assembly signals into our model and illustrate how they
influence the assembly kinetics. We show that if the dimen-
sionless nucleation rate is sufficiently high, adding assembly
signals increases the encapsulation rate. Finally, we
compare our model with the experimental results of (15),
and summarize our findings in the conclusions of the paper.
MATERIALS AND METHODS

Nucleation-and-growth model

Let each DNA strand present in the solution act as a quasi-one-dimensional

template of (dimensionless) length L that can bind NDNA proteins (Fig. 1 A).

We assume that the (dimensionless) length that each protein covers is small,

so m ¼ L=NDNA � L, allowing us to treat the encapsulation process in

the continuum limit. This approach is justified for NDNA > 100, below which

we should take into account that proteins attach in discrete units. Mirroring

the zipper model, we assume that the nucleation of the binding of proteins

onto the template occurs at one of the free ends of the DNA template. This

approach is known to be valid for DNA templates that are shorter than some

length that is arguably set by the binding free energy (8,10).

Following established nucleation theory, we model this nucleation pro-

cess as a Poisson process with a nucleation rate I (22). Hence, the nucleation

site on the template nucleates at time t, i.e., it binds a single protein or clus-

ter of proteins, with a probability density function given by

PðtÞ ¼ Ie� It: (1)

We treat the nucleation rate I as a phenomenological parameter that can be

obtained from direct comparison of our model with experimental data, and

that in principle depends on the experimental conditions such as the protein

concentration (10).

After the nucleation stage, proteins attach to the nucleus and the protein

coat elongates. Since the critical protein nucleus consists of a single or a

few proteins, its direct influence on the fraction of the template that is

encapsulated can be neglected if the total number of proteins that fit on
the DNA is very much larger (21). We introduce the elongation rate g, pre-

sumed to be constant during the complete process. This we justify by noting

that we compare our theory with experiments that are conducted at a con-

stant protein concentration by a constant flow of protein solution over an

array of DNA strands in a setup where the fluid flow stretches the strands.

The progress of their packaging can be visualized (Fig. 1 B and C) since the

length D is proportional to the number of bound protein molecules (15).

For simplicity, as already disclosed, we treat the elongation process as if

it were purely deterministic, which results in an encapsulated length lðti; tÞ
of the DNA template that is a linear function of time,

lðti; tÞ ¼ ðt � tiÞg (2)

for lðti;tÞ% L. Here, ti is the time that nucleation occurs and t > ti the time of

observation. For a finite template of length L, the template is fully encapsu-

lated for all tR ti þ L=g, resulting in lðti;tÞ ¼ L. We define the elongation

time te ¼ L=g as the time required to encapsulate the whole template if

nucleation occurred at one of the free DNA ends. Experimentally, this hap-

pens to be the case as it is probably linked to the direction of the flow in the

experimental setup (15). We discuss the validity of the (implicit) assump-

tion that the kinetics are irreversible at the end of the paper.
RESULTS

Combining the nucleation and growth stages of the encapsu-
lation process, we define the average template coverage
CqDðtÞ as

CqDðtÞ ¼ ClDðtÞ
L

¼
Z t

0

lðti; tÞ
L

Ie� Iti dti; (3)

where ti < t. Taking the finite length of the DNA into ac-
count, this can be straightforwardly shown to yield

CqDðtÞ ¼ ClDðtÞ
L

¼

8>>><
>>>:

t

te
þ 1

g

�
e�gt=te � 1

�
; if t% te;

1þ 1

g
e�gt=teð1 � egÞ; if t > te;

(4)

with the dimensionless nucleation rate g ¼ Ite as the only
relevant parameter in our nucleation-and-growth model.
We note that g depends on the template size via the elonga-
tion time te ¼ L=g. Even though only a single nucleation
event can occur per template, we can interpret g as the ex-
pected number of nucleation events that could statistically
have occurred during a time equal to te.

While a seemingly simple relation, the predictions of
Eq. 4 are far from that. To highlight this, Fig. 2 shows the
mean template coverage as function of the scaled time t=te
for selected values of the parameter g. The sigmoidal shape,
more conspicuous for small values of g, hints at the dy-
namics typical of a nucleated process, which, of course, is
not entirely surprising.

From Fig. 2, we conclude that a number of distinctive
growth regimes emerge and these depend on the value of g.
As shown in Fig. 2 B, we identify an early-time regime for
t � 1% te where the template coverage scales quadratically
Biophysical Journal 121, 2583–2599, July 5, 2022 2585



FIGURE 1 Schematic overview of our model. (A)

The two-step mechanism for encapsulation of DNA

by the coat protein is initiated by a stochastic nucle-

ation process that occurs at the free end of the DNA.

After this the protein coat can engage in the elonga-

tion process, which shortens the genetic material

with the length D (an observable) by somehow

folding it in the complex. In the lattice representa-

tion of our model, N represents the nucleation site

at a free DNA end and q is the number of binding

sites on the DNA. Schematic overview of the exper-

imental setup is shown in (B) (top view) and (C)

(side view). One of the DNA ends is tethered to a

barrier and the buffer containing the C-S10-B coat

proteins flows along the DNA chains. Coat proteins

attach from this buffer solution onto the DNA tem-

plates. (D) The packaging signal mimics (dCas12a)

divide the DNA template into smaller independent

subtemplates, each of which separately adheres to

the nucleation-and-elongation mechanism. See (15)

for more details on the experimental setup and re-

sults. Reprinted (adapted) with permission from

(15). Copyright 2022, American Chemical Society.

To see this figure in color, go online.
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with time. Indeed, closer inspection of Eq. 4 shows that for
this regime

CqDðtÞf1

2

I

te
t2; (5)

predicting that at early times encapsulation is dictated by the
timescale t1 ¼ ffiffiffiffiffiffiffiffi

te=I
p

.
A linear intermediate growth regime emerges if g is either

distinctly smaller or larger than unity, corresponding to the
situation that the timescales for nucleation and growth are
clearly separated. For the case that nucleation is a (rela-
tively) fast process and g[ 1, we find that the linear
regime emerges for It[ 1, yet t% te. This we explain
2586 Biophysical Journal 121, 2583–2599, July 5, 2022
from Eq. 4 by noting that in this case the exponential term
becomes small and only the linear relation survives, i.e.,

CqDðtÞf1

te

�
t � 1

I

�
: (6)

Hence, we are led to conclude that the relevant timescale
must now be t2 ¼ te. We interpret the 1=I term as a lag
time, because elongation can only commence after the
nucleation event, which on average occurs after a time
1=I.

For the case that nucleation is a (relatively) slow process
and g � 1 (not shown in Fig. 2 B), we find from Eq. 4 that
a linear regime emerges for t > te as



FIGURE 2 Average template coverage as func-

tion of the dimensionless time t=te, with te the

elongation time. (A) Linear scale. Blue line, g ¼
0:1; orange line, g ¼ 1; green line, g ¼ 10.

(B) Log scale. Scaling included as guide for the

eye. Gray dashed line separates initial regime

(t=te % 1) from exponential decay regime. To see

this figure in color, go online.

The impact of packaging signal mimics
CqDðtÞfIt; (7)

where we use that to linear order 1 � expg � � g. The
relevant timescale is t3 ¼ 1=I, as nucleation is the only
relevant timescale here. This linear regime is characterized
by the absence of a lag time.

Finally, for the case that t=te > 1, we find this regime to be
governed by a simple exponential relaxation to complete
template coverage,

1 � CqDðtÞ
1 � CqDðteÞ ¼ e�ðIt�gÞ; (8)

where the relevant timescale is t4 ¼ 1=I. It transpires that
our seemingly simple kinetic equations produce no fewer
than three regimes, governed by four timescales.

These three growth regimes actually only manifest them-
selves if neither the elongation nor the nucleation process
fully dominates the encapsulation kinetics. If this were the
case, Eq. 4 reproduces what we would naively expect. For
the case that elongation is much faster than nucleation, if
g/0, we find CqD ¼ 1 � expð� ItÞ, noting that in Eq. 4
only the solution for t > te survives, that to linear order
1 � expg � �g and that g=te ¼ I. This, in fact, is what
we would expect, as it is equivalent to the (cumulative)
probability that a protein has nucleated at the nucleation
site before time t. For the elongation-limited case, where
the nucleation process is much faster than the elongation
process and g/N, Eq. 4 reduces to CqDðtÞ ¼ t=te for
0% t% te and unity for t > te. This, obviously, is also in
accord with what we expect for a deterministic growth pro-
cess with a constant growth rate.

While the average template coverage provides relevant in-
formation about the encapsulation kinetics, it contains no
direct information about the efficiency of complete encapsu-
lation. Since genetic material is known to degrade if left un-
protected, we also need to focus attention on the relevant
statistics for complete template packaging. We can quantify
the efficiency of complete encapsulation by considering the
mean waiting time for this to happen. For any template to
be completely encapsulated at time t, a nucleation event
must have occurred at least a time te earlier. Hence, we
conclude that the mean waiting time must obey

CtwD ¼
Z N

te

t � Ie� Iðt� teÞdt ¼ te þ 1

I
: (9)

This is actually a sensible prediction and in line with our
earlier analysis, if we indeed interpret 1=I as a lag time and
realize that after this lag time it takes another time te to fully
encapsulate the template.

Finally, since the nucleation process is stochastic, we find
that the standard deviation s of the completion time depends
only on the quantity I and obeys the simple relation s ¼
1=I. From an experimental point of view, optimal control
of the encapsulation process is characterized by both a short
mean waiting time and a small standard deviation. Whereas
the mean waiting time can be minimized by minimizing the
elongation time or maximizing the nucleation rate, the stan-
dard deviation can only be made smaller by increasing the
nucleation rate.
Packaging signals and packaging signal mimics

Attaching multiple packaging signals, or packaging signal
mimics if we refer to protein molecules that mimic them,
to the DNA template can have different effects depending
on their functionality. The packaging signal mimics we
consider bind at predesignated locations on the DNA and
act as nucleation-inducing diffusion barriers. We refer to
both the inert and the chemically active proteins as pack-
aging signal mimics, as both were found to enhance the
encapsulation kinetics, although to a different extent. Argu-
ably, the proteins that act as packaging signal mimics only
influence the assembly kinetics locally. Consequently, this
suggests that these packaging signal mimics effectively sub-
divide the polynucleotide template into smaller, indepen-
dent DNA templates (‘‘subtemplates’’). In the context of
virology, a packaging signal usually only refers to sequences
on the genetic material that have a higher binding affinity for
the coat protein (8,9,23). Consequently, these would not
Biophysical Journal 121, 2583–2599, July 5, 2022 2587
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subdivide the DNA template in independent subtemplates.
We do not consider this important but subtle difference in
the remainder of this paper, and we will not distinguish be-
tween the terms ‘‘packaging signal mimics’’ and ‘‘packaging
signals.’’

In principle, no distinction needs to exist between either
side of a packaging signal, so growth can proceed in both di-
rections. Bidirectional growth may cause changes in the ge-
ometry of encapsulated virus-like particles (VLPs) from
linear to bend or star-like shapes, at least when multiple
packaging signals (‘‘origins of assembly’’) are inserted in
the RNA of TMV (23–25). We note, however, that the ex-
periments of Calcines-Cruz et al. (15) were conducted in a
flow cell, in which the flow direction breaks this symmetry
(see Fig. 1 B). In practice, this means that the proteins move
unidirectionally and that they tend to accumulate near
one side of the packaging signal. This accumulation of
weakly bound coat proteins can trigger the nucleation of a
strongly bound state, akin to what happens at the free ends
of the DNA (3). The other side of the packaging signal
then acts as a barrier that halts the elongation process
which progresses in the direction opposite to the flow direc-
tion (15).

To study the effect of the packaging signals on the
encapsulation kinetics, we introduce in our model n� 1

additional, equidistantly placed packaging signals on the
template. Thus, we have in total n nucleation sites if we
include the one on one of the free ends. We presume that
the nucleation rates at the preferred free end of the template
and those at the packaging signals are the same, which, in
effect, results in all n portions of the template being iden-
tical. Hence, in our model the free end of the DNA acts as
a packaging signal. However, as already advertised in the
introduction, the experimental findings show that specif-
ically functionalized packaging proteins enhance the overall
encapsulation rate, i.e., suggesting different nucleation rates
for the end site and the others (15). We do not take this into
account in our paper, but a discussion on the effect is
presented in the supporting material. We shall return to
this issue at a later stage in this article.
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Given these assumptions, we find that the average
coverage of any subtemplate adheres to Eq. 4, at least if
we replace the template length L by that of the subtemplates
L=n. Since all subtemplates are identical and independent,
we conclude that the template coverage of the full template
must be given by

ClDðtÞ ¼ n � ½ClDðtÞ�L ¼ L=n; (10)

yielding

CqDðtÞ ¼ ClDðtÞ
L

¼

8>><
>>:

n
t

te
þ n

g

�
e�gt=te � 1

�
; if t% te=n;

1þ n

g
e�gt=te

�
1 � e

g
n

�
; if t > te=n:

(11)

The effect of packaging signals on the average template
coverage turns out to be equivalent to renormalizing both g

and te by 1=n, as is evident from comparing Eqs. 4 and 11.
This might suggest that an increase in the number of pack-
aging signals should always produce a smaller (equal-time)
template coverage, which would be in agreement with
models and experiments of linear viruses, but contrasts
with models and experiments on the effect of packaging sig-
nals on (icosahedral) viruses (see, for example, (9,19,25)).
This, however, is not quite true, as we show in Fig. 3 for
g ¼ 10 (note that the n ¼ 1 case in Fig. 3 corresponds to
the green curve in Fig. 2). From the figure we conclude that
increasing the number of nucleation sites n actually makes
the template saturate to full coverage faster, not more slowly.

Mathematically, this becomes evident if we rewrite Eq.
11 in terms of varying combinations of the time t and two
timescales that emerge naturally, namely I� 1 and te=n.
The last timescale decreases with increasing n, arguably
making the assembly faster if te is fixed by the length of
the DNA only. A more intuitive explanation relies on real-
izing that it is the result of the competition between three ef-
fects. First, the overall nucleation rate on the template
FIGURE 3 Average template coverage as func-

tion of the scaled time. Here, te is the elongation

time, the dimensionless nucleation rate g ¼ 10,

and the effect of packaging signals is included

for 0 (n ¼ 1), 5 (n ¼ 6), 10 (n ¼ 11), and

n/N packaging signals in both graphs. Addition-

ally, the cases for n ¼ 100 (red) and n ¼ 1000 are

included in (B). (A) Linear scale. (B) Log scale. To

see this figure in color, go online.



The impact of packaging signal mimics
increases due to the presence of additional nucleation sites,
which increases the average template coverage. Second, due
to the additional nucleation sites, many different pathways
now exist to achieve the same template coverage, which
makes it more likely to occur. Third, the packaging signals
block large parts of the template for elongation, which slows
the whole process down. It turns out that the first two effects
are always dominant, for Eq. 11 tells us that vCqDðtÞ= vnR 0

for all values of g, n, and t. We find that for large n there is a
limit to the increase in average template coverage: for n/
N we have CqDðtÞ ¼ 1 � expð� ItÞ, which can be ob-
tained from Eq. 11 in a similar fashion as we did before
taking the limit g/0 for the case that n ¼ 1. This limit
corresponds to the case where all sites on the DNA template
are encapsulated by the nucleation process only, reducing
the process to a (non-cooperative) Langmuir-type adsorp-
tion process albeit without any detachment reactions, which
follows a simple exponential decay, as would any first-order
reaction kinetics (21,26).

Figs. 2 and 3 exhibit the same regimes. However, the
relevant timescales do turn out to vary with the number of
packaging signals n; for the early-time regime the relevant
timescale is

ffiffiffiffiffiffiffiffiffiffi
te=nI

p
and that for the intermediate linear regime

we find either te=n ifg=n[ 1 or I� 1 if g=n � 1 . The time-
scale for the late-time exponential decay is not affected by the
number of packaging signals. The n ¼ 100 and n ¼ 1000

curves approach the n/N limit very slowly and a quadratic
regime persists only for t=te < 1=n, as can be expected from
Eq. 11. All of this suggests that while thewhole encapsulation
process appears to be faster, this ismainly true for the short and
intermediate times.

The number of packaging signals turns out to have a
significant and non-trivial impact on the time required for
complete encapsulation. As before, we measure the effi-
ciency of complete encapsulation of the template using
the mean waiting time for full coverage. The probability
that the template is fully encapsulated at time t can be
decomposed in the probability that n � 1 subtemplates
have been encapsulated by time t, and the last subtemplate
encapsulates at time t. Note that for any subtemplate to be
fully encapsulated at time t, a nucleation event must occur
at least a time te=n earlier.

Accounting for the n-fold degeneracy, which originates
from the n identical pathways that now exist to reach full
coverage, we find

CtwD ¼ n

Z N

te=n

t �
"
1 � e

� I
�
t� te

n

�#n� 1

�
 
Ie

� I
�
t� te

n

�!
dt;

(12)
FIGURE 4 The normalized waiting time twðnÞ=twð1Þ as function of the

number of packaging signals for selected values g ¼ 0:5 (yellow, plusses),

g ¼ 1 (blue, crosses), g ¼ 5 (green, dots), g ¼ 10 (red, triangle-down),

and g ¼ 100 (black, triangle-up). Lines are the analytical continuation of

Eq. 13. To see this figure in color, go online.
where the term between the square brackets represents
the probability that a certain subtemplate is fully encapsu-
lated at time t, and the term in round brackets denotes the
probability that one of the templates encapsulates at time
t. Carrying out the integral, we find it to reduce to

CtwDðnÞ ¼ te
n
þ 1

I
Hn; (13)

where Hn ¼ Pn
j¼ 11=j is the so-called n

th harmonic number
(27). We return to a discussion of the properties ofHn below.
We associate I� 1Hn with a lag time in a similar fashion as
we did for the case n ¼ 1 in the preceding section. It
appears that this quantity also depends on the number of
packaging signals on the template.

Finally, we find the standard deviation to remain inversely
proportional to the nucleation rate, but now depends non-
trivially on the number of packaging signals as

s ¼ 1

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k ¼ 1

k� 2

s
: (14)

Since
PN

k¼ 1k
� 2 ¼ p2=6, we conclude that 1%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼ 1k
� 2

p
%p=

ffiffiffi
6

p
z1:28 (28). While the encapsulation

process should logically become more stochastic upon the
addition of nucleation sites, this is not mirrored by a concom-
itant increase in the standard deviation, which turns out to be
essentially independent of the number of packaging signals n.

Surprisingly, while the mean template coverage always
increases with increasing number of packaging signals,
this is not the case for the mean waiting time, as can be
seen in Fig. 4. In the figure, we present the waiting time-
scaled to that of a single nucleation site, CtwDðnÞ=CtwDð1Þ,
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as a function of the number of nucleation sites n, for a range
of values of the dimensionless nucleation rate g. If this ratio
attains a value smaller than unity, this indicates that the
encapsulation process is more efficient and larger than unity
if it is less efficient.

It transpires that only for g> 1 the average encapsulation
time decreases with increasing number of packaging sig-
nals. While this might seem inconsistent with our earlier
observation that the average template coverage always in-
creases with increasing n, this in fact is not so. To explain
this, it is instructive to first focus on the case g ¼ Ite <
1, in which fewer than one nucleation event can occur in
the relevant elongation timescale te. Adding an additional
packaging signal then effectively halts the elongation pro-
cess, and the encapsulation can only continue if another
nucleation event occurs. Hence, partially covered templates
have a larger lifetime but are easier to form as the additional
packaging signals induce additional routes for partial encap-
sulation. Overall, this means that (on average) a larger frac-
tion of the templates is covered, but mostly because a larger
number of templates are partially encapsulated and fewer
templates are completely encapsulated. Consequently, for
g< 1 the complete encapsulation is nucleation limited.

Now, for g> 1, multiple nucleation events can occur within
the elongation time te for the complete template. Adding
packaging signals can then induce nucleation before they stall
the overall elongation process, thereby speeding up the
encapsulation process. In this case, partially encapsulated
templates have a shorter lifetime than is the casewithout pack-
aging signals, and thus the mean time for complete encapsula-
tion decreases. In other words, for g> 1 the encapsulation
process must be elongation limited, not nucleation limited.

As is evident from Fig. 4, we find that for a given dimen-
sionless nucleation rate g> 1 the encapsulation efficiency
quickly decreases to an optimal value, after which it slowly
increases again. We can actually determine this optimal
value from Eq. 13 by using an asymptotic expansion of
the harmonic number Hn (27).

Hn z lnnþ gE þ
1

2n
þ/; (15)

with gEz0:577 the Euler-Mascheroni constant. We now
treat n as a continuous and not as a discrete variable, and
optimize Eq. 13 to obtain

nopt z
1

2
þ Ite ¼ 1

2
þ g (16)

for the optimal value of the number of nucleation sites nopt.
Neglecting the constant value of 1=2, this results in an op-

timum encapsulation efficiency if the nucleation lag time for
a single nucleation site is approximately equal to the elonga-
tion time of a subtemplate, i.e., 1=Izte=n. It has to be noted,
however, 1) that the decrease in the waiting time with
increasing value of n is significant only for the first few
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packaging signals, and 2) that the optimum is very shallow,
as Fig. 4 clearly shows. Indeed, for, say, g ¼ 10, any value
between approximately 6 and (at least) 30 packaging signals
yields a normalized waiting time that is essentially indistin-
guishable from its true optimum n ¼ 10; see Eq. 13.

From Eqs. 13, 15 and 16, we find the normalized
mean waiting time corresponding to the optimal value of
the number of nucleation sites to obey the approximate
relation

min

�
CtwDðnÞ

CtwDðn ¼ 1Þ
�
z

CtwDðn ¼ gÞ
CtwDðn ¼ 1Þf

Cþ lng

gþ 1
; (17)

with C ¼ 1þ gEz1:577 a constant, where we neglect a
term of the order g� 2. Since the optimum in the normalized
waiting time is very shallow, discreteness effects are small,
and treating n as a continuous variable does not lead to a sig-
nificant error. The combination of the optimum value for n,
and the corresponding normalized waiting time, suggests a
route to optimize the encapsulation process experimentally.
Obviously, this presumes that we can control the dimension-
less nucleation rate g. We discuss the implications of this
result for the role that packaging signals may have in the as-
sembly of naturally occurring viruses at the end of this article.

Generalizing these results to predictions of times associ-
ated with partial template coverage turns out to be highly
non-trivial on account of the possibility of elongation pro-
cesses happening simultaneously on the different subtem-
plates. This makes the calculation increasingly complex the
larger the number of packaging signals on the template.
Such a calculationwould, however, still be highly interesting,
as it is experimentally observable and produces information
on intermediates. Actually, partial coverage times might be
easier to measure if the experimentally accessible time win-
dow for measurements is, for whatever reason, too short to
measure complete encapsulation.

Obviously, for most practical applications we are only
interested in fully encapsulated DNA templates. Still, we
can ask ourselves the question as to the extent of correlation
between the mean waiting time for partial and that for com-
plete encapsulation. To deal with this problem, we supple-
ment our analytical calculations with kinetic Monte Carlo
(kMC) simulations, from which the mean waiting time for
partial template coverage can be straightforwardly ex-
tracted. This also allows us to verify our analytical predic-
tions and investigate how stochasticity expresses itself in
this problem.
Kinetic Monte Carlo simulations

We set up our kMC simulations (detailed below) in such a
way that they mimic the basic ingredients of our analytical
theory, in which case we can simply regard our kMC results
as a (near-)exact representation of our analytical model. We
let the DNA template be represented by a one-dimensional



The impact of packaging signal mimics
lattice with a fixed number of NDNA ¼ 104 lattice sites. This
is slightly larger than the expected number of proteins
(NDNAz8083) required to fully encapsulate a DNA strand
with a length of 48.5 kbp, which we determine by consid-
ering that the complete capsid is charge neutral (3,10,15).
We note that our results do not depend on the value
for NDNA, as long as it is sufficiently large (NDNA > 100).
Correct kinetic parameters for different NDNA can be ob-
tained by simply rescaling the number of proteins on the
DNA.

In our simulations, we introduce the nucleation reaction
with a rate knuc and an elongation reaction with rate ke.
Both reactions are stochastic, yet we do not allow for un-
binding of proteins in the elongation process to keep as close
to the model as possible. Thus, the overall kinetics remain
based on the same model description, and the nucleation re-
actions can commence only on predesignated nucleation
sites that act as the packaging signals. We invoke the
well-known Gillespie algorithm (29–31), which can yield
exact trajectories for stochastic reactions. In applying the al-
gorithm, we calculate two random numbers at each kMC
step to perform a single reaction. The first random number
we use to select the reaction with a probability proportional
to the reaction rate, and the second we use to select the time
step for the kMC step, sampled from a Poisson distribution.
These two steps we repeat until the DNA template is fully
encapsulated. We refer the reader to the review paper of
Gillespie (31) and the supporting material for more
information.

We are able to map our simulations onto the parameter
space of our theory by defining tkMC

e ¼ NDNA=ke and
FIGURE 5 The mean waiting time to encapsulate a given fraction of the DNA

average template coverage CqD). We include kMC results for n ¼ 1 (blue), n ¼ 2

asymptotic result n/N (black, dashed). Crosses represent our analytical result

(C) g ¼ 10. To see this figure in color, go online.
gkMC ¼ knuct
kMC
e ¼ NDNAknuc=ke. This implies that the

kinetic parameters of our kMC simulations and our model pa-
rameters must be related via ke ¼ NDNA=te and knuc ¼ I ¼
g=te. To obtain good statistics, all averages are calculated us-
ing 20,000 independent trajectories. As we show in the sup-
porting material, by setting tkMC

e ¼ te and gkMC ¼ g, the
kMC results for the mean template coverage (Fig. S1) and
mean waiting time for complete encapsulation (Fig. S2) are,
for all intents and purposes, indistinguishable from the predic-
tions of our analytical theory.

Consequently, we conclude that the stochastic nature of
the elongation rate in the simulations does not appreciably
influence the average observables, and that we can indeed
treat the averages obtained from the kMC simulation as a
(near-)exact representation of our analytical model. This
can be understood intuitively if we interpret the standard
deviation for a single reaction, which is inversely propor-
tional to the reaction rate, as a measure for the stochasticity.
Based on Eq. 14, we argue that the standard deviation asso-
ciated with many of such reactions is essentially equal to
that of a single reaction. Hence, we expect that the stochas-
tic nature of the elongation rate becomes apparent only if kel
is of equal or larger order than knuc, which in our case
corresponds to gkMCTNDNA ¼ 104.

Our kMC results for the mean waiting time CtwD as a func-
tion of the partial targeted coverage q ¼ N=NDNA are sum-
marized in Fig. 5. We present the CtwD, scaled to the
elongation time te, as a function of the targeted coverage q

for the selected values of g ¼ 0:1, 1, and 10. For small
values of g, the curves turn out to be step-like. This happens
if the time between consecutive nucleation events is larger
template as a function of the target coverage q (not to be mistaken for the

(orange), n ¼ 6 (green), n ¼ 11 (red), and n ¼ 21 (purple), and the exact

and are color matched to the simulation curves. (A) g ¼ 0:1; (B) g ¼ 1;
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than the time required to encapsulate a subtemplate. We
discuss this in more detail below.

For the case of n ¼ 1 only a single jump occurs and the
mean waiting time increases linearly afterward with a slope
of unity, which holds for all finite values of g. The standard
deviations are not shown for the sake of clarity, but, consid-
ering that the kMC results are essentially equal to our
analytical theory, we argue that the dominant contribution
is from the nucleation processes only. Hence, they must
be proportional to 1=g.

In Fig. 5 we have indicated our analytical prediction for
complete coverage, Eq. 13, with crosses, all of which are
within the 95% confidence intervals of our simulations (not
shown). The prediction for the asymptotic limit for n/ N,
i.e., for the case that the template is encapsulated by the nucle-
ation process only, is equal to CtwD=te ¼ � 1=glogð1 � qÞ and
is shown in Fig. 5 too (see also the supporting material).

The first relevant observation we make from Fig. 5 is that
for small values of g all curves appear to be discontinuous,
i.e., characterized by a sequence of steps. The reason for this
is that, if nucleation events are rare, the encapsulation of a
subtemplate is finished before a next nucleation event hap-
pens. Only the ‘‘jump’’ associated with the first nucleation
event we expect to be infinitely sharp, because now the tem-
plate changes from empty to not empty. The remaining
‘‘jumps’’ occur as a sequence of smaller steps, which are
too small to be observed in Fig. 5. In the continuum limit,
this would translate to the edges of the jumps to be slightly
rounded and the slopes to be large but finite. For large values
of g, this step-like behavior only appears to be relevant for
large n and then only for large values of q.

It turns out that we can understand the presence of these
jumps if we focus attention on the mean waiting time for the
nucleation events, which simplifies the description consider-
ably. As shown in the supporting material, the mean waiting
time for the kth nucleation event, given that n packaging sig-
nals are present on the DNA template, obeys the relation

CtwD
te

ðk; nÞ ¼ 1

g
ðHn � Hn� kÞ; (18)

withHx again the harmonic number. If the time between two
consecutive nucleation events is sufficiently large, the
encapsulation of the template may stall. This happens if
the (mean) time between two consecutive nucleation events
is larger than the elongation time for a subtemplate, te= n.
Hence, we expect that a jump in the mean waiting time is
present at the kth nucleation event only if

k > n

�
1 � 1

g

�
: (19)

This shows that for any g% 1 jumps are always present,
whereas for g> 1 they are only present if the template
coverage is sufficiently large. Comparison with Fig. 5 shows
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that this condition is only approximately valid for g> 1,
likely because several elongation processes can occur
concurrently.

The second relevant observation we make from Fig. 5 is
that the asymptotic limit n/N appears to produce a
limiting lower boundary for the average waiting time for
most values of the template coverage, i.e., if we exclude
the presence of the jumps. As is perhaps to be expected,
we find that for sufficiently small partial template coverage,
adding packaging signals always decreases the mean wait-
ing time compared with the case where no packaging signals
are present. Only for large template coverage does this result
in an increase in the mean waiting time upon adding further
nucleation sites.

We can, broadly, distinguish the crossover of these
behaviors by considering the intersection between the
n ¼ 1 and n/N curves, the former of which is given by
CtwD=te ¼ 1=gþ q, which we obtain from Eq. 9 upon replac-
ing the encapsulation time for the complete template te with
that of a partial template qte. The intersection point
q ¼ N=NDNA is defined by 1=gþ q ¼ � 1=glogð1 �
qÞ. The solution of this equation is q ¼ 1þ 1=gW0ð�
ge� 1�gÞ, with W0ðzÞ the principal branch of the Lambert
W-function (28). From this we find that the limiting value of
this intersection is given by q ¼ N=NDNA ¼ 1 � 1=
ez0:63 for g/0 and by q ¼ 1 for g/N. This suggests
that adding a sufficient number of packaging signals increases
the encapsulation efficiency for any value ofg if q< 1 � 1=e,
although this is not necessarily accurate for small values of n
due to the presence of the jumps shown in Fig. 5. Surprisingly,
this means that the mean time to achieve, say, one-half encap-
sulation cannot be used to quantify the effect of packaging sig-
nals on the relative efficiency to completely encapsulate the
DNA template (15).

Still, a prediction for the mean waiting time for one-half
encapsulation would be interesting, if only because this
observable has been determined experimentally (15). Lack-
ing an analytical expression that takes the number of pack-
aging sites into account, we can make a prediction of the
shortest possible mean waiting time to encapsulate one-
half of the DNA template. In this case, we deduce from
our kMC results that the shortest mean waiting time corre-
sponds the n/N limit. Hence, we obtainD

t1
2

E
ðn/NÞD

t1
2

E
ðn ¼ 1Þ

¼ ln2

g=2þ 1
; (20)
and Ct1
2
DðnÞ=Ct1

2
Dðn ¼ 1Þ must be larger than this value for

any finite n. The merit of this estimate is that it depends
on g in a simple manner, providing us with a relatively
straightforward and direct method to determine a lower
bound on the model parameter g from experiments, as we
will show at the end of the next section.
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At this point, the question arises as to how reasonable and
accurate our model is in describing actual experimental re-
sults. We answer this question by comparing our theoretical
and kMC simulation results with the experiments by Cal-
cines-Cruz et al. (15) in the following section.
Comparison with experiments

Ideally, a comparison with experiments allows us not only to
validate our model but also to determine values of the model
parameters g and te. As we shall see next, we find that our
model agrees reasonably well with the available experi-
mental data, albeit that the values of the model parameters
that we extract by curve fitting do not necessarily reflect
our perhaps somewhat naive expectations. Regardless,
considering the simplicity of our model, we find the agree-
ment between theory and experiment encouraging.

As already mentioned, the experiments of Calcines-Cruz
and collaborators (15) are conducted in a flow cell. This re-
sults in the DNA templates being stretched and supplied by
a solution with a constant concentration of C-S10-B coat
proteins. Proteins that attach to the templates cause these
templates to reduce in length, which are believed to be
fully coated when the length of the DNA strands reduces
to about one-third of their initial length if no packaging
signals are being used, or one-fourth if packaging signals
are present on the DNA. Hence, the apparent length of
the DNA can be tracked as a function of time and can be
converted to a time evolution of the fraction of the template
encapsulated. For each measurement 30 min of observation
time is taken, irrespective of whether the DNA templates
are fully or only partially encapsulated in that amount of
time.

We compare our model with several types of measure-
ment by Calcines-Cruz et al. (15) who obtain the template
coverage, averaged over 25 templates, for three cases: 1) un-
decorated DNA templates, i.e., without additional pack-
aging signals, in contact with a C-S10-B coat-protein
solution at a concentration ranging from 10 to 300 nM; 2)
for a fixed C-S10-B concentration of 25 nM, where either
5 or 10 ‘‘bare’’ dCas12a proteins are aimed to be attached
at specific, equidistant positions on the DNA template;
or 3) for a fixed C-S10-B concentration of 10 nM, where
five functionalized dCas12a proteins can be attached to
the DNA templates.

For the second case, the bare dCas12a-proteins are
believed to act only as diffusion barriers on the DNA tem-
plate, while in the third case, the functionalized dCas12a
protein binds specifically to the silk motifs of the engineered
coat proteins. We will not attempt to curve fit the data on the
latter type, as the assumption of equal binding strength must
be strongly violated: the ends are likely to bind much less
strongly than the packaging signals. We return to this below.

In the remainder of this section we first compare our
model with the experimental results for the mean template
coverage for undecorated DNA templates. Second, we
compare our model with the cases that 5 or 10 dCas12a pro-
teins can at least theoretically be bound to the DNAs,
focusing on both the mean template coverage and the
mean waiting time for one-half encapsulation.

In Fig. 6 we present the experimental data for the case
without additional packaging signals for six different pro-
tein concentrations together with the confidence intervals.
It should, in principle, be possible to obtain our model pa-
rameters, the elongation time te and nucleation rate I, by a
curve fit using, e.g., a non-linear least-squares method (32).
Unfortunately, we find this procedure to be highly sensitive
to the initial parameter estimates, and it does not neces-
sarily converge unless a very good estimate of the (un-
known) model parameters is supplied. Such a high
sensitivity for the estimate of an initial parameter is not un-
common in non-linear least-squares methods (32).

To work around this, we opt for a different method to find
the (in some sense) best estimates for our model parameters.
We first define the global residual Rðte; IÞ that quantifies how
well our theoretical model compares with the experimental
results. Since the standard errors are not constant, we use
a weighted sum of squared residuals R ¼ PNdata

j¼ 1s
� 2
j

ðCqDexp:ðtjÞ � CqDmodelðtj; te; IÞÞ2, where Ndata is the total
number of data points, CqDexp:ðtjÞ represents the experimental
outcome at time tj, CqDmodelðtj; te; IÞ is our model value at this
time, and sj is the standard error at time tj (32). We discard
the first two data points that have a very small standard de-
viation in order to avoid that these points weigh overly
heavily in our curve fitting (see the supporting material
for a discussion). Next, we discretize the parameter space
spanned by te and I and determine the global residual for
a set of te and I values.

We limit our region to 0< te % 300 (min) and 0< I% 33

(min�1), and find this to be sufficiently large. (Here, ‘‘min’’
stands for ‘‘minutes’’ in time.) Since our residual R is the
same as the one commonly used in weighted least-squares
methods, we expect that the values for te and I correspond-
ing the smallest value of R are now the same as those that
would have been obtained by a properly converged
weighted least-squares method (32). This is obviously
only true if the global minimum for R is actually within
the region that we investigate. Contour plots of the residuals
as function of Ið¼ g =teÞ and te can be found in the support-
ing material.

From these contour plots we typically find that there are
two types of minimum: for small values for te and I we
find a relatively deep and well-defined minimum, whereas
for larger values of te and I a large region with a nearly iden-
tical residual R is observed. The presence of these plateau-
like local minima might explain why a direct curve fit is
very sensitive to the initial parameter estimates. Neverthe-
less, in all cases we can distinguish the global minimum
for the residual R, and we set the model parameters I and
te to the values corresponding to this smallest residual.
Biophysical Journal 121, 2583–2599, July 5, 2022 2593



FIGURE 6 Black (crosses): experimentally obtained average template coverage CqD as a function of the time t in units of 30 min from 25 DNA templates

(15). The shaded area represents the 95% confidence interval (15). Red (drawn line): model fit to the average template coverage. Different curves show results

for different concentrations of C-S10-B proteins of (A) 10 nM, (B) 25 nM, (C) 50 nM, (D) 100 nM, (E) 150 nM, and (F) 300 nM. To see this figure in color, go

online.
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As shown in Fig. 6, the overall agreement between theory
and experiments is good, although the theoretical prediction
for CqD is not always within the 95% confidence intervals for
all times, in particular for the high concentrations. Our curve
fits for low C-S10-B concentrations of 10, 25, and 50 nM are
significantly less reliable considering that only partial
curves are available, hence the fit parameters should be in-
terpreted with caution. According to the model, the relevant
timescale for early times is equal to

ffiffiffiffiffiffiffiffi
te=I

p
, indicating that

we cannot determine te and I independently if the experi-
mental data set is limited to the early stages of the assembly
process. This is also mirrored by the contour plot for the re-
sidual in Fig. S4, where we find the residual for the global
minimum to be only slightly smaller than those of the other
minima. All sets of parameters are presented in Table 1,
including the normalized square deviation V, with V ¼ 0

representing a perfect fit. We define the square deviation
as V ¼ PNdata

j¼ 1ðCqDexp:ðtjÞ � CqDmodelðtj; te; IÞÞ2=CqDexp:ðtjÞ2,
which is scaled to the mean template coverage instead of
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the standard deviation and acts as a measure for the
goodness of the fit.

In the fitting, we obviously presume that the assumption
of irreversible kinetics is valid for all concentrations. Based
on the equilibrium zipper model, however, reversible effects
might become relevant at the lowest concentrations. Earlier
studies put the binding free energy for elongation at about
� 17 to � 18 kBT, resulting in a dissociation constant for
elongation KDz10� 8M (10). Incidentally, this is identical
for the binding of coat protein of TMV to its RNA (2).
Our treatment of the kinetics as irreversible should therefore
be (approximately) valid for a C-S10-B concentration well
above 10 nM. Note that even below the critical concentra-
tion, even thermodynamically, the DNA templates are either
naked or fully encapsulated due to the cooperative character
of the assembly (8). In our experimental result we find all
templates to be (at least) partly encapsulated within the
observation time, suggesting that the assembly is limited
by kinetics, not thermodynamics. Hence, if reversibility



TABLE 1 Parameter estimates for te, I, and g ¼ Ite for

increasing coat-protein concentration C-S10-B if no packaging

signals are attached to the DNA template

[C-S10-B] (nM) I (min�1) te (min) g (–) V

10 0.015 1.3 0.02 0.48

25 0.5 56 29 1.29

50 0.04 0.2 0.01 0.27

100 0.2 4.1 0.6 0.27

150 0.3 2.7 0.7 0.42

300 0.2 0.6 0.1 1.2

The scaled residual V represents the goodness of the fit, and smaller values

reflect a better fit. See also the main text.
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does indeed become relevant, it should result mainly in
different values for I and te. We return to this at the end of
this article.

We expect the model parameters I and te to both depend on
the C-S10-B concentration. Focusing on the high concentra-
tion (R 100 nM) cases only, we find this to be the case: see
Table 1. In general, the elongation time te tends to decrease
with increasing concentration, albeit not consistently so.
This global tendency of the elongation time to decrease
with increasing concentration has to be expected, for a larger
concentration means that the (thermodynamic) driving force
for elongation must be larger. Indeed, the elongation time te
should be inversely proportional to the C-S10-B concentra-
tion because the elongation rate g corresponds with a quasi-
first-order reaction. From te we can extract the elongation re-
action rates (kel/[C-S10-B]) as 2� 1010 min� 1 M�1, 2� 1010

min� 1 M�1, 9� 1010 min� 1 M�1 for the 100 nM, 150 nM,
and 300 nMcases, respectively. Thesevalues are not identical
but, considering the simplicity of our model, reasonably
close. We note that these values are higher than those found
in previous experiments (0:7� 108 min�1 M�1), but this is
not entirely surprising given that 1) we expect that the exper-
imental conditions should make the encapsulation of DNA
more efficient, and 2) we excluded coat nucleation at random
intermediate positions from our model, yet this is observed
(10).

Contrasting with this is the nucleation rate, I, which does
not seem to vary much with increasing concentration. If we
accept that the nucleation rate does indeed not depend much
on the concentration at high protein concentration, this
would indicate that the nucleation process is limited by
some intermediate reaction-limited process rather than a
diffusion-limited process, arguably similar to Michaelis-
Menten kinetics (33).

Of course, we need to be cautious not to overinterpret the
outcome of our curve fitting, firstly because of the simplicity
of our model and secondly because the fits are based on a
limited set of experimental data; and thirdly, our model ig-
nores aspects that we know take place, such as that nucle-
ation events at random spots on the DNA template do also
occur, even though these are not included in our model
(21). Nevertheless, the overall agreement is remarkably
good, indicating that our model describes most of the rele-
vant underlying physics.

We next compare theory and experiment for the case that
packaging signals have been attached to the DNA templates,
which are in contact with a C-S10-B concentration of 25 nM.
The designated binding sites are chosen such as to in theory
produce 5 or 10 regularly placed on the DNA for the
dCas12a proteins to bind onto. This does not mean that all
these binding sites actually do carry a dCas12a protein in
the experiments (15). Experimentally, only lower bounds
of 1:250:5 and 2:651:1 dCas12a proteins could be verified
to be attached to the DNA in the cases of 5 or 10 available
binding sites, respectively (15). We expect actual values in
between the lower bounds and the theoretical maximum.

Ignoring this inconvenience for the moment, and
presuming that the theoretical number of packaging signal
mimics is equal to the actual one, we show in Fig. 7 the
experimental average template coverages and the curves
corresponding to the best model parameters found in our
procedure. The values of these parameters we present in
Table 2, noting that our model fits actually produce values
for I and te=n, which only fixes te if the value of n is known.
Hence, we quote the values of te=n rather than those of te
(see also below). We further note that Fig. 7 A, representing
the case for zero dCas12a binding sites, is identical to Fig. 6
B and that we add it for the sake of reference.

The first thing we observe is that, indeed, as announced,
adding packaging signal mimics speeds up the packaging
of the DNA, and that our model is able to describe this.
For five packaging signals we find very good agreement
with our analytical model, where our curve fit is (mostly)
within the 95% confidence intervals of the experiments.
For 10 packaging signals agreement is somewhat less
good, and we find that any nucleation rate between approx-
imately unity and 30 per minute yields a residual R between
20 and 40 (see also Table 2 and the supporting material).
This wide range in optimal parameter estimates implies
that the fit in this particular case is not very accurate. The
model curve given in Fig. 7 C is that for parameter values
I ¼ 10 min�1 and te=n ¼ 26 min, which has the lowest re-
sidual Rz20 for all values tested. Although a wide range of
parameters appears to fit almost equally well, all give a
value of g ¼ Ite [ 1. In this case, Eq. 11 predicts that
the mean template coverage CqDðtÞ is essentially linear until
it reaches the maximum value of unity. Although the linear
regime is properly captured within our model, the late-time
regime clearly is not, as Fig. 7 C shows.

The latter might actually not be surprising. By construc-
tion, in our model all packaging signal mimics are equidis-
tantly positioned on the DNA template. As already
announced, it is likely that not all of the equidistant dCas12a
binding sites have a packaging signal mimic attached to it.
Thiswould effectively result in inhomogeneously distributed
packaging signal mimics over equidistant binding sites. As
we show in the supporting material, this has a pronounced
Biophysical Journal 121, 2583–2599, July 5, 2022 2595



FIGURE 7 Black (crosses): experimentally obtained mean template coverage CqD as function of time obtained from 25 DNA templates for [C-S10-B] ¼
25 nM (15). The shaded area represents the 95% confidence interval. Red (drawn line): best model fit to the average template coverage. (A) 0, (B) 5, and (C)

10 dCas12a proteins attached to the DNA. For the parameter values, see Table 2. To see this figure in color, go online.
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effect on the late-time average template coverage only and
slows down the assembly kinetics. For early times, no distinc-
tion exists between n equidistant or (on average) CnD inhomo-
geneously distributed packaging signals. The reason for this
is that the whole encapsulation process is governed by the
local conditions only. Therefore, for the average template
coverage we can only distinguish between n uniform and n
non-uniform subtemplates, if in the latter case the elongation
process can encapsulate a larger part of the DNA template
than would be possible in the former case. As a result of
this, the effect of inhomogeneously distributed bound
dCas12a molecules becomes apparent only for later times.
This would explain why our model does not properly capture
both short- and late-time behavior shown in Fig. 7 C.

If we compare the three cases with the different number of
dCas12a binding sites in Fig. 7 and Table 2, agreement turns
out to be not quite satisfactory. Indeed, within the validity of
ourmodel,wewould expect that nucleation rate I and the elon-
gation time te to not depend on n. From Table 2 we conclude
that this is clearly not the case ifwe insert the theoretical values
of n ¼ 1; 6; 11, we find for te values of approximately 56,
15, and 250 min, so our model appears to not be internally
consistent with the data. The origins of this discrepancy may
TABLE 2 Parameter estimates for the nucleation rate I, the reduced

all dCas12a binding sites are occupied and the dimensionless nucle

are present on the DNA template

dCas12a binding sites I (min�1) te=n (min)

0 0.5 56

5 0.05 2.5

10 1 � 30 24 � 26 2

Here, n denotes the number of nucleation sites on the template. The concentra

represents the goodness of the fit, and smaller values reflect a better fit.
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be due to 1) the nucleation rates not being equal on the free
DNA end and the packaging signals, or 2) the value of n not
being equal to the maximum value and, because of this, the
barriers not being actually equidistant in the experiments.
We return to these points at the end of the article.

Finally, we compare the experimental mean waiting time
for one-half encapsulation both qualitatively and quantita-
tively with our model calculations. Our kMC calculations
show that this mean waiting time decreases with increasing
value of the number of nucleation sites n for fixed values of
g and te. This is clearly in agreement with the experimental
results of ht1

2
i ¼ 3156 min, ht1

2
i ¼ 1557 min, and

ht1
2
i ¼ 1053 min for 0, 5, and 10 dCas12a binding sites,

respectively (15). We have no direct analytical prediction
of how the mean one-half encapsulation time depends on
the number of packaging signals, but we did conclude
from Fig. 5 that the shortest mean waiting time for one-
half encapsulation corresponded to the case where the num-
ber of packaging signals n becomes very large.

In that case, Eq. 20 describes the relation between
ht1

2
iðn/NÞ=ht1

2
iðn ¼ 1Þ and g, and can be used to derive

bounds for the value of g. Note that the experimental result
elongation time te=n, and the elongation time te, presuming that

ation rate g=n for the case that 0, 5, or 10 dCas12a binding sites

te (min) g=n (–) g (–) V

56 29 29 1.29

15 0.125 0.7 0.7

64 � 286 24 � 720 264 � 7920 1.0

tion of coat proteins is fixed at [C-S10-B] ¼ 25 nM. The scaled residual V
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Ct1
2
D ¼ 1053 min for 10 dCas12a binding sites must now be

an upper bound for Ct1
2
Dðn/NÞ. It follows from Eq. 20 that

this results in a lower bound for the value of g, which makes
sense as a larger value for g in our model correlates to a faster
encapsulation process. In this way we find the lower bound
g> 252. Consequently, the parameter g is likely to be larger
than unity, and we conclude from Eq. 13 and Fig. 4 that in this
particular case the packaging signals should also decrease the
mean time for complete encapsulation.

It is important to note that this value is not completely
consistent with the parameter estimations we found
comparing the average template coverage. Here, we found
that for the case of five dCas12a, g ¼ 0:7 is slightly smaller
than unity, contrasting with our conclusion that g is likely
larger than that (see Table 2). However, since the number
of packaging signals n is unknown, and the fit for five
dCas12a is obtained using partial template coverage only,
we refrain from overinterpreting this apparent discrepancy.
CONCLUSIONS

To summarize, we have developed a nucleation-and-growth
model to explain the recent experimental observation that
attaching so-called packaging signal mimics onto DNA tem-
plates can significantly increase the encapsulation rate of the
DNA by designer proteins that mimic virus coat proteins
(15). These packaging signals are synthetic proteins de-
signed with CRISPR-Cas techniques that insert themselves
on predestined positions along the DNA and can act as inert
barriers or as actual binding sites for the coat proteins. In
both cases, the encapsulation rate increases with the number
of packaging signals, although we have limited our study to
the former.

Our one-dimensional model is based on the experimental
observation that the protein coat can only elongate after an
initial nucleation process. Packaging signals are modeled as
diffusion and elongation barriers that behave as additional
nucleation sites. For the inert packaging signals, we under-
stand this to originate from the local accumulation of coat
proteins near such packaging signals in the experiments, re-
sulting from the flow of protein solution across the stretched
DNA chains. In the absence of packaging signals and for
DNA molecules that are in some sense sufficiently short,
nucleation happens at the far end of the DNA molecule,
which then acts as an effective packaging signal.

In the absence of additional packaging signals, we find
that there are three growth regimes for the mean template
coverage, i.e., for the fraction of DNA packaged by the
coat proteins. These include a quadratic early regime, a
linear intermediate regime, and an exponentially decaying
late-time regime. This indicates that our model shows a sur-
prisingly rich behavior considering that it is essentially
determined by a single dimensionless parameter in the
form of the dimensionless nucleation rate. If additional
packaging signals are attached to the DNA template, we
find the same three regimes, but the relevant timescales
for the early-time and intermediate regime now depend on
the number of packaging signals.

We find that the mean template coverage does always in-
crease with increasing number of packaging signals. Inter-
estingly, this is not mirrored by the mean waiting time for
complete encapsulation, which we find to depend non-triv-
ially on the dimensionless nucleation rate and the number
of packaging signals. For sufficiently large nucleation rates,
we find that this mean waiting time decreases rapidly only
with the first few packaging signals, after which it depends
only weakly on the number of packaging signals. A clear but
shallow optimum exists in the mean waiting time as a func-
tion of the number of packaging signals, which is important
for experimentally optimizing genome packaging using
packaging signals.

The mean waiting time for complete encapsulation might,
however, not always be easily accessible experimentally. Our
kMC simulations show, however, that the mean time for par-
tial encapsulation is not always correlated in a simple way
with the mean waiting time for complete encapsulation. In
fact, based on the results presented in Figs. 4 and 5, we find
that for a template coverage below approximately 63%, add-
ing a sufficient number of packaging signals always decreases
the mean waiting time with increasing number of packaging
signals, even if the mean waiting time for complete encapsu-
lation increases.Hence, there is some reason for cautionwhen
interpreting experimental data on encapsulation kinetics if
near completion of the process is not achieved.

The quantitative agreement between our kinetic theory
and the experiments is not quite perfect. Still, we find that
the qualitative agreement is certainly encouraging. Gener-
ally, our highly idealized model is able to explain many of
the experimental results of Calcines-Cruz and co-workers
(15), suggesting that it does include most of the relevant
physics. Still, that our model cannot self-consistently
explain all experimental observations suggests that our
model is incomplete. We note that some of the discrepancies
might also be associated with the limited experimental data
set, spanning only the first 30 min of the co-assembly. This
becomes especially relevant for low concentrations of coat
protein, as only a small portion of the DNA can encapsulate
within this time window. A better understanding of the
disagreement between our calculations and the experiments
by Calcines-Cruz et al. (15) would therefore also require
data on the encapsulation kinetics spanning a longer time.

The first and arguably one of the main simplifications in
the current model is the assumption that the nucleation sites
at the free end of the DNA and at the packaging signals are
equivalent, i.e., have the same nucleation rate. That this is
not necessarily true was already shown by the experimental
observation that a specifically functionalized dCas12a pro-
tein changes the overall encapsulation rate (15). This can,
in principle, be incorporated relatively straightforwardly in
the mean template coverage using Eq. 10 by requiring that
Biophysical Journal 121, 2583–2599, July 5, 2022 2597
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the nucleation rate on a single subtemplate differs from that
on the other n � 1 subtemplates. Preliminary results show
that while the average template coverage changes in a fairly
trivial way, this is certainly not the case for the mean waiting
time (see supporting material). Yet the effect remains minor
if the ratio of the nucleation rates deviates not too much
from unity.

A second effect absent in our model is that not all target
sites on the DNA that can bind a packaging signal are actu-
ally bound to one. Although we argue that this should have
only little influence on the early-time regime, the late-time
regime should be expected to be affected significantly.
Indeed, it is especially in this late-time regime that our
model deviates significantly from the experimental results.

The third effect that we did not incorporate into the model
is coat-protein nucleation at arbitrary places on theDNA tem-
plate. As already alluded to, this has been observed experi-
mentally for sufficiently long DNA templates (15). We
expect, however, that this is mostly relevant for DNA strands
without packaging signals, as the additional nucleation sites
make it less likely that this process occurs. We intend to rem-
edy all three of these simplifications in future work.

It seems sensible to remind the reader why we opted for a
description based on irreversible kinetics to explain the ex-
periments of Calcines-Cruz et al. (15) rather than one based
on microscopic reversibility that eventually produces a ther-
modynamically consistent coverage. We recall that the main
motivation for our model is the experimental observation
that disassembly of encapsulated DNAs is exceedingly
slow when exposed to protein-free buffer solution and is
not observed within the experimental time (unpublished
data). This is even the case for naked capsids formed
in absence of DNA, which, naively, should be less
stable than capsids that contain DNA (17). This contrasts
with the predictions of a kinetic model based on the equilib-
rium zipper model, which shows that disassembly must
commence immediately (8).

A purely thermodynamic model also predicts that adding
packaging signal mimics to the DNA template actually de-
creases the ensemble-averaged template coverage. The
implication is that from a thermodynamic point of view
the overall assembly becomes less, not more, efficient
with increasing number of nucleation sites. That this is
indeed so is actually a highly non-trivial result attributable
to a competition between two opposing effects. Although
additional nucleation sites introduce a large entropy gain
for partially encapsulated templates, the additional nucle-
ation sites also introduce additional energy penalties for
DNA encapsulation. It turns out that the energy penalty al-
ways dominates over the entropy gain. Albeit based on an
equilibrium theory, we believe that lower mean coverage
with increasing number of nucleation sites also implies
slower dynamics, because the thermodynamic driving force
for encapsulation becomes smaller. This is also in disagree-
ment with experimental observations shown in Fig. 7.
2598 Biophysical Journal 121, 2583–2599, July 5, 2022
As a final note, we would like to emphasize that our work
might also be relevant for understanding the role of packaging
signals in naturally occurring viruses, even though we de-
signed our model specifically to understand the effect of spe-
cifically designed packaging signals on the assembly kinetics
of filamentous VLPs. Our simple model shows that adding
packaging signals can speed up but also slow down the assem-
bly kinetics of complete viruses and that this depends on how
fast nucleation is on the timescale of elongation (see Fig. 4).
This might perhaps explain the diversity in the number of
packaging signals and their binding strength in viruses. It
could simply be the kinetically optimal way to encapsulate
the genetic material for a given interaction strength between
the coat protein and the genetic material (34).

For viruses with a more complex capsid geometry, such
as the icosahedral geometry, self-assembly must become a
higher-than-one-dimensional process to enable the forma-
tion of complete capsids. Whether our model has any
bearing on the impact of packaging signals in these viruses
remains to be seen. We note, however, that in some
modeling approaches the assembly process essentially re-
duces this from a three-dimensional to a quasi-one-dimen-
sional process, albeit with additional geometric constraints
(9,19). The complex models of Twarock and collaborators
indicate that including a larger number of high-affinity
packaging signals is not necessarily beneficial for the
encapsulation process (19). This agrees with the results
from our simple kinetic model.

All of this confirms that in molecular self-assembly,
where hysteresis plays a very important role, establishing
what assembled state is the most prevalent is not necessarily
only dictated by thermodynamics but most certainly also by
kinetics (35–37).
SUPPORTING MATERIAL
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