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Ligand-Regulated Oligomerisation of Allosterically In-

teracting Proteins†

Charley Schaefer,∗a‡ René A. J. de Bruijn,a§ and Tom C. B. McLeish a‡

The binding of ligands to distinct sites at proteins or at protein clusters is often cooperative or anti-

cooperative due to allosteric signalling between those sites. The allostery is usually attributed to

a configurational change of the proteins from a relaxed to a configurationally different tense state.

Alternatively, as originally proposed by Cooper and Dryden, a tense state may be achieved by

merely restricting the thermal vibrations of the protein around its mean configuration. In this work,

we provide theoretical tools to investigate fluctuation allostery using cooling and titration experi-

ments in which ligands regulate dimerisation, or ring or chain formation. We discuss in detail how

ligands may regulate the supramolecular (co)polymerisation of liganded and unliganded proteins.

1 Introduction

The allosteric binding of small molecules to proteins or to protein

complexes vitally regulates a wide range of biological systems1–5.

For instance, kinases and phosphatases may interact with the pro-

tein calmodulin (CaM), which is only in its active form after cal-

cium has bound to it6,7. As shown very recently by Xu et al., in

presence of the appropriate synthethic organic ligands CaM may

reversibly self-assemble into helical microfilaments7. The con-

centration of the calcium ligand was found to not only control

the self-assembly, but, owing to the conformational change of the

protein, also tune the pitch of the helical assemblies. The crucial

role of allostery in this relation between ligand binding, protein

self-assembly and assembly structure begs the question to what

extent the type of allostery may play a role. Indeed, Changeux-

type enthalpic ‘conformation allostery’ and Cooper-Dryden-type

entropic ‘fluctuation allostery’ may affect the concentration and

temperature dependence of self-assembly differently2,8,9. In this

work, we present a statistical physics model for ligand-induced

copolymerisation (see Figure 1) that enable to investigate this.

Our work builds on a vast literature on supramolecular poly-

merisation, which distinguishes itself from regular polymerisation

by the fact that the constituents of a polymer chain are bound re-

versibly rather than covalently. This implies that, provided that

the time scales of polymerisation and depolymerisation are fast, a
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Fig. 1 (colour online) Left: The binding of a ligand to an ‘allosteron’

monomer with internal spring constant κ results in an activated monomer

with internal spring constant ακ. Right: Self-assembly of unliganded and

liganded monomers into chains may result in homo- and copolymers.

broad range of phenomena may be understood in terms of equi-

librium thermodynamics10–12. Supramolecular copolymerisation

may in general be summarised by the reaction equation13

mA + nB
Kmn⇀↽ AmBn, (1)

where m monomers A and n monomers B self-assemble into the

copolymer AmBn. The equilibrium concentrations, indicated by

[ . ], are related via the equilibrium constant

Kmn =
[AmBn]

[A]m [B]n
, (2)

which depends on the length and composition of the chain.

The length dependence of the equilibrium constant may in

particular be of importance for polymers that grow coopera-

tively10,14, which are characterised by a sharp transition from

the monomeric to the polymeric state upon cooling or upon

(monomer) titration15. However, in thermally and chemically
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activated rather than in nucleated systems, cooperativity arises

due to a conformational change of the monomer, while the free

energy of any oligomerisation step is independent of the chain

length10,16–18. The composition dependence of the equilibrium

constant Kmn is responsible for a wide range of experimental ob-

servations, such as the sergeant-and-soldiers and the majority-

rules effect19,20. These effects, where the properties of a copoly-

meric chain are dictated by either the minority or the majority

component, may be tuned by the temperature21, and is theo-

retically captured using nearest-neighbour interactions between

adjacent monomers in the chain17,22. In the context of self-

assembling proteins, the differences in interaction energies may

be attributed to nearest neighbours with different conformations,

i.e., the interaction energies between unliganded-unliganded, un-

liganded-liganded, and liganded-liganded proteins differ.

This conventional view is challenged by the now widely ac-

knowledged phenomenon of ‘fluctuation allostery’23,24, where

no such conformational changes are required. This concept

was originally proposed theoretically by Cooper and Dryden8,

and has later been supported by compelling experimental evi-

dence25,26. Fluctuation allostery originates from the coupling of

the internal modes of the constituents in the chain, and carry

over an ‘elasticity screening length’ beyond the size of a single

monomer9,27–29. Moreover, this screening length implies that the

interactions of dynamically allosteric constituents in a copolymer

of unliganded and liganded proteins may not be described us-

ing nearest-neighbour interactions. Hence, the length and com-

position dependence of the equilibrium constant Kmn is crucially

altered from the usual models with enthalpic nearest-neighbour

interactions.

An additional level of complexity in our system, is that the tran-

sition of a protein from the unliganded to liganded state is regu-

lated by effector binding through the chemical reaction

A + E
Ke⇀↽ B, (3)

where E is the ligand/effector, and A and B are the unliganded

and liganded proteins, respectively. Finally,

Ke ≡
[B]

[E][A]
(4)

is the chemical activation constant.

In this work, we will investigate how the ligands may induce

the copolymerisation of dynamic-allosteric building blocks. In or-

der to do so, in the following section we develop the statistical

mechanics of self-assembled polymers and copolymers in solu-

tion. Subsequently, we use that model to calculate titration curves

numerically, which indicate how ligand addition affects the com-

position of the copolymers as well as their degree of polymerisa-

tion.

2 Theory

2.1 Copolymers of dynamic-allosteric constituents

Dynamic allostery may be captured within the parsimonious ‘al-

losteron’ model9,29–32. Within this model, the subunits of a pro-

tein are coarse-grained to the maximal level by endowing them

with a single internal dynamic structural mode, characterised by

harmonic springs with a spring constant κ. The interactions be-

tween the different subunits is captured by connecting the har-

monic springs through a direct-coupling spring stiffness, κd. As

a final ingredient to the model, ligand binding to a subunit is

presumed to stiffen the internal spring through κ 7→ ακ, which

implies the vibrations around the average are reduced. This stiff-

ening is carried over to the neighbouring monomers, because

their internal modes are connected through the coupling spring.

Consequently, the binding of a first ligand pre-stiffens the sys-

tem prior to the binding of a second neighbouring ligand. The

binding of the second ligand therefore requires a smaller entropic

penalty to overcome than the first, implying cooperative binding.

In this section, we formalise this description of ligand binding to a

chain-like configuration of monomers within a statistical physics

description.

We consider a chain consisting of N monomers of which N−Ne

are unliganded and Ne are liganded, i.e., Ne ligands are bound to

the chain. How the ligands are distributed along the backbone of

the chain is given by the vector ~η , where ηi = 0 if monomer i is

unliganded and ηi = 1 if it is liganded. We write the Hamiltonian

of this chain as

H (x;~η ,α,Kd,ε,εe) = x
TκĤNx+ ε(N −1)+ εeNe, (5)

with ĤN(~η ,α,Kd) the tridiagonal Hessian matrix with α1 +

Kd, . . . ,αi +2Kd, . . . ,αN +Kd as diagonal elements, −Kd as the first

lower and upper off-diagonal elements, and 0 otherwise. The

symbol αi ≡ (1+(α−1)ηi) equals 1 if ηi = 0 and equals α if ηi = 1.

The internal modes of the allosterons are coupled by the direct-

coupling spring constant Kd, which, as we show below, is associ-

ated with an entropic penalty of polymerisation that non-linearly

depends on the chain length and on the number of ligands bound

to the chain. Interestingly, an indirect coupling (i.e., via resolved

fluctuations in their separation distance) of the internal modes to

fluctuations of the shape of monomers and bond-length fluctua-

tions between the monomers does not lead to such a dependence

(see ESI). To compensate for the entropic penalties generated by

restriction to the structural fluctuations the monomers are bound

through a binding energy ε, which we take independent of the

state of the proteins. The more general case may be implemented

using an Ising-type model as in Ref.17. The binding of ligands to

the monomers is driven by the binding energy εe.

Using the Hamiltonian in Eq. (5), we calculate the partition

function of a chain of length N as

ZN(Ne) =
1

∑
η1=0

· · ·
1

∑
ηi=0

· · ·
1

∑
ηN=0

δ

(

N

∑
ηi=1

ηi −Ne

)

∫

dxexp(−βH ) ,

(6)

with H = H (x;~η ,α,Kd,ε,εe)), where we sum over all possible

configurations and use the dirac delta δ to sift the configurations

with Ne ligands bound to the chain. In the SI we show that this

partition function may be cast in the usual form9,16

ZN(Ne) = ZN
1 (0)WN(Ne)e

−βε(N−1)W Ne
e e−βεeNe (7)

with Z1(0) =
√

π/βκ the partition function of an inactive
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monomer, and We ≡ α−1/2 measures the entropic penalty of

monomer activation. The entropic penalty of polymerisation

(kB lnWN(Ne)) may be approximated using

WN(Ne)≈ αNe/2

(

N

Ne

)

1
√

∑
N
k=1〈dN

k
(Ne,α)〉Kk−1

d

, (8)

where 〈dN
k (Ne,α)〉 are configuration-averaged polynomial coeffi-

cients that can be calculated analytically (see ESI). The quality

of this approximation is determined by our approximation of the

determinant det ĤN . The left panel of Figure 2 shows that our

approximation describes this quantity accurately as a function of

the chain length, chain composition and allosteron parameters Kd

and α.

(d
et
Ĥ

N
)−

1/
2

Kd

Ne

N = 10
α = 100
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Fig. 2 (colour online) Top: Value of the determinant of the Hessian ma-

trix, ĤN , as a function of the coupling parameter Kd for a chain of length

N = 10 with Ne = 0,1,2, . . . ,N ligands bound to it. The black lines rep-

resent various chain configurations, and the red lines represent the ap-

proximate configuration average, see Eqs. (S.3) and (8). Bottom: En-

tropic penalty ∆S per monomer-monomer bond as a function of the frac-

tion Ne/N of ligand-activated monomers for various chain lengths N using

Eq. (8) (black lines). The red line represents the long-chain approxima-

tion in Eq. (9). See main text.

In turn, this implies that we can accurately calculate the en-

tropy of chain elongation as a function of these parameters as

∆S =−kB lnWN(Ne)/(N −1), shown in the right panel of Figure 2.

As expected9, there is weak cooperative growth, because the en-

tropic penalty decreases to a constant value if the chain length

becomes much larger than
√

Kd. As shown in the ESI, this long-

chain limit can reasonably well be approximated by

∆S

kB(N −1)
=−φ ln

φ
√

w(Kd/α)
− (1−φ) ln

1−φ
√

w(Kd)
, (9)

with w(x) = 1/2+ x+(1/2)
√

(1+ 4x). Here, the first two terms

in the right-hand side of the equation represent the usual mixing

entropy of the monomers within a copolymer and the last two

terms represent the entropic allosteric penalty of monomer cou-

pling. While the mixing entropy favours a 1 : 1 ratio of active and

inactive monomers, the allosteric penalty results in a bias of the

minimum in entropic penalty towards a large fraction of active

monomers.

2.2 Equilibrium statistics of fibres containing bound ligands

The partition function for copolymeric chains that we calculated

above describes the interactions between the species in solution.

The second contribution that affects the ligand-induced polymeri-

sation of proteins is the chemical potential of all species, which

originates from the entropies of translation that may experimen-

tally be controlled by the concentrations. In this section, we de-

rive an equilibrium-statistics model that combines these contribu-

tions.

As a starting point, we rely on the statistical-physics recipe pre-

sented in Ref.16, and consider a system of volume V in which an

overall number density of monomers ρ0 and ligands ρ0
e are dis-

solved. The monomers are distributed over free monomers and

chains of various lengths with number density ρ(N). For this so-

lution the grand potential is given by

βΩ′

V
=

βΩe

V
+

βΩ

V
, (10)

where the first term in the right-hand side of the equation is the

contribution by the unbound ligands and the second term is the

contribution by the monomers. The latter contribution includes

free and bound monomers, as well as bound ligands. The two

contributions to the grand potential are described as follows.

The grand potential of the free ligands in solution is given by

βΩe

V
= ρe {ln(ρeυ)−1−β µe} , (11)

with υ the interaction volume, which is about the size of a solvent

molecule, and µe the chemical potential of a free ligand. ρe is

the number density of the ligands/effectors free in solution. The

contribution of the ligands that are bound to monomers is implicit

in the grand potential of all monomers.

The grand potential of the monomers is given by33

βΩ

V
=

∞

∑
N=1

N

∑
Ne=0

ρN (Ne)×

{ln [ρN (Ne)υ ]−1− lnZN(Ne)−β µN −β µeNe} , (12)

with the partition function ZN(Ne) given by Eq. (7), with µ the

chemical potential of a monomer, and with µe the chemical po-

tential of a ligand.

We obtain the length distribution of our chains in thermal equi-

librium by setting δΩ′/δρe and δΩ′/δρN(Ne) to zero for all com-

binations of N and Ne. This gives

ρe =
1

υ
eβ µe (13)
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for the number density of free ligands and

ρN(Ne) =
1

υ
ZN(Ne)e

β µN+β µeNe (14)

for the number density of polymers of length N with Ne ligands

bound to them. These expressions indicate that all number densi-

ties are determined by the chemical potentials of the ligands and

monomers.

Indeed, the number densities of the chains are related to the

number densities of the free ligands and free monomers via the

(here dimensionless) equilibrium constants as earlier introduced

in Eq. (4) and Eq. (2) by

Ke = υ−1 ρ1(1)

ρeρ1(0)
= e−βεe+lnWe , (15)

and by

KN(Ne)≡ υ−(N−1) ρN(Ne)

ρN−Ne

1 (0)ρNe

1 (1)
= e−βε(N−1)+ln[WN(Ne)]. (16)

Using these equilibrium constants, the number density of each

type of oligomer, ρN(Ne), can be expressed as a function of the

number densities of free inactive monomers, ρ1(0), and ligands,

ρe, as ρN(Ne) = υN+Ne−1KN(Ne)K
Ne
e ρNe

e ρN
1 (0).

We now obtain the final result that describes the equilibrium

statistics of the chains in the form of a mass balance for the

monomers and a mass balance for the ligands. The overall num-

ber density of the monomers is the sum of all monomers free in

solution and the ones bound in a chain, ρ0 =∑
∞
N=1 ∑

N
Ne=0 NρN(Ne).

Similarly, the overall number density of ligands is ρ0
e = ρe +

∑
∞
N=1 ∑

N
Ne=1 NeρN(Ne). If we insert the expressions for the num-

ber densities ρN(Ne) derived above, we finally arrive at

ρ0

ρ‡
=

∞

∑
N=1

N





N

∑
Ne=0

KN(Ne)

[

ρe

ρ‡
e

]Ne





[

ρ1(0)

ρ‡

]N

, (17)

ρ0
e

ρ‡
e

=
ρ‡

ρ‡
e

∞

∑
N=1





N

∑
Ne=1

NeKN(Ne)

[

ρe

ρ‡
e

]Ne





[

ρ1(0)

ρ‡

]N

+
ρe

ρ‡
e

, (18)

which are polynomials in ρ1(0) and ρe. We have rendered the con-

centrations dimensionless using the ‘transition’ concentrations ρ‡

and ρ‡
e . We have defined ρ‡ as the number density of monomers

at which half of the monomers is aggregated in absence of lig-

ands9,16. Further, ρ‡
e is the ligand concentration at which half

of the free monomers are activated at small monomer concentra-

tions, hence Keυρ‡
e = ρ1(1)/ρ1(0) = 1. This choice of scaling al-

lows us to calculate a universal phase diagram that indicates the

conditions under which (ligand-activated) polymerisation takes

place.

3 Results

Some universal features of supramolecular polymerisation in

presence of effectors may be predicted from the mass balances

in Eq. (18) without solving that equation numerically ¶. These

features are the transitions between four regions in the phase

diagram of Figure 3. This Figure shows that depending on the

overall concentrations of monomers and ligands, the monomers

may be in an active or inactive state, and may be either free

in solution or bound in chains. In the following, we quantify

and discuss the transition lines in the phase diagram. Follow-

ing that discussion, we numerically calculate the concentrations

of self-assembled species along straight horizonal and vertical

lines through the phase diagram, which experimentally represent

monomer- and ligand-titration curves.

ρ
0
/ρ

‡
ρ0e/ρ

‡
e

∼ √
α

∼ ρ‡/ρ‡e

10−6

100

106

10−6 10−3 100 103 106

inactive
monomers

inactive homopolymers

active homopolymers

co
poly

mers

active
monomers

Fig. 3 Phase diagram for ligand-induced self-assembly of monomers in

a dilute solution. The axes represent the scaled monomer and ligand

concentration ρ0/ρ‡ and ρ0
e /ρ‡

e , respectively. The solid lines indicate the

phase transition from (in)active monomers to homopolymers, which are

displaced through the ligand parameter α. The dashed line (given by

Keυρ0
e = 1+υKeρ0 with Ke the activation constant) represents the phase

transition from inactive to ligand-activated material. Near this transition

copolymers may be formed.

The transition lines can partially be understood in terms of

the self-assembly of a single type of either inactive or active

monomers into homopolymers9. For inactive species, i.e., at low

ligand concentrations, the polymerisation concentration is pro-

portional to the square root of the allosteron coupling parameter

Kd. This factor originates from the coupling of monomers with an

internal mode that is described by the allosteron spring constant

κ, which is in actived monomers increased to ακ. As a conse-

quence the entropic penalty of coupling monomers decreases and,

while the interaction range between the monomers in the chain

remains unaltered, the polymerisation concentration decreases by

a factor
√

α. These different polymerisation concentrations are

represented by the horizontal solid lines in the phase diagram of

Figure 3.

The dashed line in the phase diagram indicates the transition

from inactive to active species. As we later show when discussing

the titration curves, this transition may be understood in terms

¶ A numerical solution can be obtained using a common multivariate bisection

method. This method makes use of the fact that ρ1(0) monotonically increases and

ρe decreases upon an increase of the overall monomer concentration, ρ0, while ρ1(0)

monotonically decreases and ρe increases upon an increasing overall ligand concen-

tration, ρ0
e
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Fig. 4 (colour online) Fraction of aggregated material, f (top panels), and number-averaged degree of polymerisation, N̄n (bottom panels), as a

function of the scaled monomer concentration ρ0/ρ‡ for a varying ligand concentration ρe/ρ‡
e . From left to right, the ratio between polymerisation and

activation concentration is varied from ρ‡/ρ‡
e = 0.1 to 10. The shift of the polymerisation concentration upon ligand addition is governed by the allosteron

parameters Kd = α = 104. We have subjected the dashed line for further analysis in Figure 5.

of monomer activation in absence of dimers or larger oligomers.

Within that approximation the mass balances in Eq. (18) reduce

to ρ0 = ρ1(0) + ρ1(1) and ρ0
e = ρe + ρ1(1), with the constraint

Keυ = fe/ρe(1− fe) and fe = ρ1(1)/ρ0 the fraction of activated

material. It follows that the fraction of activated material may

be expressed as the quadratic equation fe = (1/2a)(
√

b2 +4a−b)

with a = ρ0/ρ‡
e and b = 1+(ρ0

e −ρ0)/ρ‡
e . In the asymptotic limit

of low monomer concentrations, the fraction of activated material

is

fe = 1− 1

1+ρ0
e /ρ‡

e

, (19)

independent of the monomer concentration. At high monomer

concentrations and sufficiently low ligand concentration (ρ0
e ≤

ρ0), the fraction of activated material increases linearly with an

increasing ligand concentration as

fe =

(

1+
ρ0

ρ‡
e

)−1
ρ0

e

ρ‡
e

(20)

up to to sharp transition at ρ0
e ≤ ρ0, where it reaches unity. The

condition ρ0
e /ρ‡

e = 1+ρ0/ρ‡
e not only defines the transition from

inactive to active species at high monomer concentrations, but

is also consistent with the condition ρ0
e ρ‡

e = 1 at low monomer

concentrations at which half of the material is activated. There-

fore, we consider this condition, represented by the dashed line

in Figure 3, as a reasonable definition of the transition line from

inactive to active species.

Now that we have discussed the transition lines in the phase di-

agram in general terms, we investigate the consequences of these

transition lines for experimentally measurable titration curves.

We first focus on the monomer-titration experiments in which the

concentration of monomers is varied at a fixed ligand concentra-

tio (Figure 4). In that Figure, we have numerically calculated how

the fraction of aggregated material, f ≡ 1− [ρ1(0)+ρ1(1)]/ρ0, and

the number-averaged degree of polymerisation, defined by

N̄n =
∑N,Ne

NρN(Ne)

∑N,Ne
ρN(Ne)

, (21)

depend on the monomer concentration for three values ρ‡/ρ‡
e ∝

Ke. In each panel, the ligand concentration is varied from low

(green) to high (red) ligand values around the transition concen-

traiton (increments by factors of 0,10.2,0.5, 1, 2, 5, . . .).

The two main phenomena that occur due to an increasing

monomer concentration are (i) a transition from liganded to un-

liganded self-assembly, and (ii) the transition through a maxi-

mum. At different fixed ligand concentrations, the self-assembly

curve varies as follows. For low ligand concentrations (green

lines), the unliganded monomers self-assemble into chains for

monomer concentrations well above the polymerisation concen-

tration ρ‡ ∝
√

Kd
9. This is associated with the increasing fraction

of aggregated material, as well as the degree of polymerisation

that increases with the square root of the monomer concentra-

tion. At high ligand concentrations, the shape of the self-assembly

curve is almost identical, but shifted to a lower polymerisation

concentration by a factor
√

α, provided that α ≤ Kd. At inter-

mediate ligand concentrations, this results in a maximum in the

polymerisation curve (see e.g. the black dashed lines).

We inspect one of those non-monotonic curves, i.e., the black

dashed line in Figure 4, in more detail in Figure 5. In the left

panel, we present the chain-length distribution, ρN ≡ ∑Ne
ρN(Ne),

from low (green) to high (red) monomer concentration. This Fig-

ure shows that sufficiently long chains obey the usual exponential

distribution and that its width, related to the degree of polymeri-

sation, increases non-monotonically. This is due to the fact that

the nucleus size depends on the monomer concentration, shown

in the right panel.
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Fig. 5 (colour online) Fraction of ligands (top) and number density (in

arbitrary units) (bottom) as a function of the chain length for a monomer

concentration ranging from ρ/ρ‡ = 10−1 (green) to 10 (red) at a fixed

ligand concentration of ρe/ρ‡
e = 2, corresponding to the black dashed

line in Figure 4. The fixed parameters are ρ‡/ρ‡
e = 10, and allosteron

parameters Kd = α = 104.

The right panel of Figure 4 shows fraction of activated

monomomers in an assembly, 〈Ne/N〉, for the same concentra-

tions as in the left panel. As expected, for an increasing monomer

concentration the fraction of ligands decreases. In all cases, this

fraction is low for small oligomers below the nucleus size (or elas-

ticity screening length), but reaches a plateau for long chains. We

find that the nucleus size increases with a decreasing ligand frac-

tion, that can be reasonably-well approximated by
√

Kd/αφ with

φ the fraction of ligands in the long-chain limit.

It is this change in nucleus size that we hold responsible for the

peak in the black dashed titration curve of Figure 4: For small

monomer concentrations, the ligand fraction is large and most

monomers are activated. Due to the small nucleus size, an in-

creasing monomer concentration may lead to larger oligomers.

However, the nucleus size increases, and at a further increased

monomer fraction the oligomers become unstable and lead to a

decreased fraction of aggregated material and a decreased de-

gree of polymerisation. Upon further increase of the monomer

concentration, fraction of ligands in the chain tends to zero, and

the nucleus size becomes constant and usual non-activated poly-

merisation may take place.

We conclude that ligand-activated copolymerisation of

monomers leads to distinct phenonoma that are discernible as

non-monotonic monomer-titration curves, which may be mea-

sured experimentally. As we discuss below, ligand binding

also leads to notable features in ligand-titration curves at fixed

monomer concentrations, see Figure 6.
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Fig. 6 (colour online) Titration of ligands from a scaled ligand con-

centration of ρ0
e /ρ‡

e = 10−2 to 102 for scaled monomer concentrations

varying from ρ0/ρ‡ = 10−3 (green) to 10 (red), for Kd = α = 104 and

ρ‡/ρ‡
e = 1. The plots show how ligand titration affects A) the fraction of

free monomers that are active, B) the total fraction of activated material,

C) the fraction of aggregated monomers, and D) the number-averaged

degree of polymerisation.

Figure 6 shows the fraction of active free monomers,

ρ1(1)/(ρ1(0)+ρ1(1)), the fraction of active material, fe, the frac-

tion of aggregated material, f , and the number-averaged degree

of polymerisation N̄n as a function of the scaled ligand concen-

tration. This concentration is scaled using the ligand concentra-

tion that defines the dashed transition line between regions dom-
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Fig. 7 (colour online) Ligand-titration curves for a activation factor ρ‡/ρ‡
e varying from 10−4 (green) to 104 (red) at a monomer concentration fixed at the

polymerisation concentration, ρ0 = ρ‡. From left to right: Fraction of aggregated material, f , fraction of activated material, fe, degree of polymerisation,

N̄n.

inated by inactive and active material in the phase diagram of

Figure 3. This concentration is given by the condition where fe in

Eq. (20) equals unity.

As expected, for small monomer concentrations (green), the

fraction of activated monomers in plot A and the overall fraction

of activated material in plot B are identical, and obey Eq. (19) in-

dependently of the monomer concentration. For a large monomer

concentration (red lines), we find that the fraction of activated

material, fe, tends towards Eq. (20), where fe linearly increases

with an increasing ligand concentration and sharply crosses over

to unity at the transition concentration. However, the fraction

of free active monomers remains low up to the transition. This

implies that the active species predominantly reside in oligomers.

Indeed, the fraction of aggregated material (Figure 6C) and

degree of polymerisation (Figure 6D) increase with an increas-

ing fraction of monomers below the transition concentration. For

larger ligand concentrations, both quantities increase as well, in-

dicating ligands may actually be employed to switch between two

different degrees of polymerisation at a fixed monomer concen-

tration. While the transition becomes sharper with an increasing

monomer concentration, it may also be controlled by the activa-

tion constant through ρ‡/ρ‡
e ∝ Ke, see Figure 7.

In Figure 7 we have fixed the overall monomer concentration,

ρ0, at the polymerisation concentration, ρ‡, while varying the lig-

and concentration by four orders of magnitude around the activa-

tion transition (the activation factor ρ‡/ρ‡
e ∝ Ke varies from 10−4

to 104). This increase results in a crossover from a smooth to a

sharp transition between a small and large fraction of aggregated

material and between inactive and active species, as shown in the

left and middle panels of Figure 7, respectively. In turn, the tran-

sition from small to large oligomers becomes sharper, see right

panel of Figure 7. Hence, we have shown that while monomer

titration can result in a non-monotonic increase of the fraction of

aggregated material and of the degree of polymerisation, ligand

titration gives rise to a monotonic increase that strongly depends

on both the monomer concentration and the activation constant.

4 Conclusions

We have theoretically investigated the supramolecular polymeri-

sation of allosterically interacting proteins to which ligands may

bind. We view this is a representative system for an entire fam-

ily of ligand-regulated self-assemblies of proteins, which also in-

cludes dimers and rings.

In practice, fluctuation allostery is associated with a spectrum

of short- and long-wavelength fluctuations on the protein confor-

mation, which may be assessed, e.g., using a Gaussian network

model32,34. While the short-wavelength fluctuations presumably

only give rise to short-ranged interactions between proteins, the

long-wavelength fluctuations may affect proteins in a chain at

long distances. In the present work, we viewed proteins at the

maximum level of coarse graining and investigated the influence

of long-wavelength fluctuations exclusively.

In this entropic ‘allosteron’ model, the internal modes of pro-

teins are coupled upon polymerisation, which leads to an elas-

ticity screening length
√

Kd. The polymerisation concentration is

proportional to this screening length, but may however be de-

creased by ligand binding if they stiffen the internal modes of

the monomers. Indeed, if their internal mode becomes stiffer by

a factor α, the elasticity screening length decreases to
√

Kd/αφ .

Hence, the polymerisation concentration can be reduced by a fac-

tor
√

α ≤√
Kd if sufficient ligands are added to the solution.

The width of the transition may be tuned using the monomer

concentration and the activation constant. The transition itself

may be monotonic or non-monotonic, which is also controlled by

the activation constant. Indeed, for large activation constants and

small monomer concentrations, small ligand-activated oligomers

may be formed. Upon monomer addition, however, the oligomers

will harbour a smaller fraction of ligands due to which the elas-

ticity screening length surpasses the oligomer length, which in

turn destablises the oligomers. Consequently, with an increasing

monomer concentration the number of oligomers may decrease.

While we have focused exclusively on the calculation of titra-

tion curves, our method may be directly applied to calculate cool-

ing curves. Those curves are a superposition of our monomer- and

ligand-titration curves, in a way that explicitly depends on the

monomer-monomer and ligand-monomer binding energies ε and

εe, respectively. Following the usual approach14,35, the model

may be fitted to experimental titration or cooling curves. This

should provide direct information about fluctuation allostery in

the experimental system.

An extremely promising protein of which the self-assembly may

potentially be affected, and regulated, by fluctuation allostery is

the calmodulin (CaM) protein7. There is strong evidence that,

apart from conformational changes, calcium-regulated fluctua-
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tion allostery plays a key role to the binding of CaM to target

molecules36,37. How this regulation takes place in detail, and

what the role of fluctuation allostery is to CaM-CaM dimerisation

remains unknown. However, in recent works a range of differ-

ent types of titration curves were obtained from coarse-grained

molecular dynamics38, as well as from experiment7.
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