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Abstract

Polymeric materials can be made electrically conductive by adding a sufficient amount of conduc-
tive nanoparticles to the material. Slender nanoparticles are extensively used for this purpose,
since only a small amount of nanofillers is required to achieve the desired conductivity increase.
The formation of a system-spanning particle network is paramount for these properties to emerge,
and the density at which this occurs is the percolation threshold. We investigate percolation in two
distinct models. To investigate percolation in thin film materials, we employ a two-dimensional
model. Previous attempts to study percolation in two dimensions via integral equation theories
have shown unsatisfactory results, hence we investigate the Percus-Yevick closure for this purpose.
Secondly, we investigate how the positional order of the smectic-A phase affects the percolation
threshold of perfectly aligned cylinders. We find not only that Percus-Yevick is inaccurate in two
dimensions, but that it gives no indication of the presence of a percolation threshold at all for both
spherical and anisometric particles. The effect of the positional order within the smectic-A phase
is limited to a small shift in the percolation threshold, as compared to a nematic reference fluid.
Our current method allows us to investigate the physical dimension of the particle clusters within
the smectic layer, but not perpendicular to it. It therefore remains an open question whether a
material enhanced by nanofillers could exhibit in-layer-percolation, while remaining an insulator
in the third dimension, which might be relevant for technological applications.
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Chapter 1

Introduction

1.1 Percolation

The mechanical and transport properties of polymeric materials can be enhanced by adding a
sufficient amount of nanoparticles. The formation of a material-spanning (or percolating) network
of the nanoparticles is often paramount for these properties to emerge. Highly anisometric particles,
such as carbon nanotubes, have been extensively researched, and have already showcased a plethora
of applications such as improving the quality of lithium ion batteries, novel sensors and printable
electronics made on plastic substrates [1–3].

The critical density at which the material-spanning network is formed is generally referred to as
the percolation threshold. At the percolation threshold, the electrical conductivity can improve by
many orders of magnitude, as illustrated by Figure 1.1. Experimentally, the difference in conduc-
tivity just below and just above the percolation threshold for carbon nanotubes has been observed
to be in the range of ten orders of magnitude, but depends sensibly on both the host material and
the type of nanoparticles [4]. For many technological applications, the percolation threshold needs
to be as low as possible, in particular for materials that need to remain transparent [5, 6]. Many
different factors influence the formation of the percolating networks, and understanding these ef-
fects on a fundamental level can facilitate the rational design of nanocomposite materials. Effects
like polydispersity, (externally tuned) particle alignment and shape defects of slender nanoparti-
cles on the percolation threshold in bulk material are already understood [7–10]. Yet, some open
questions remain on the effects of, for instance, density fluctuations, local aggregation of particles
and physical constraints in thin-film materials. In this thesis, we aim to improve the understanding
of two of these effects on percolation. In the first part of this thesis, we investigate percolation in
thin film materials by employing a two-dimensional model. In the second part, we investigate how
the spatial density modulation of a smectic-A liquid crystal phase influences network formation.

1.2 Thin Films

If a material is sufficiently thin, the regime of (quasi-)two-dimensional materials is entered and
network formation can effectively behave similarly to that in a two-dimensional material [11]. The
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Figure 1.1: A schematic view of the conductivity of a nanocomposite as a function of the density. Below the
percolation threshold, no percolating cluster exists and the material is non conductive. At the percolation
threshold the conductivity increases by many order of magnitude due to the presence of a material-
spanning nanoparticle network.

easiest method to model highly elongated nanofillers in two dimensions is by describing them
as infinitely thin sticks that count as connected if they overlap. Various attempts have been
made to theoretically describe percolation in such a two-dimensional model using integral equation
theories, yet quantitative agreement with the rising number of Monte Carlo simulation results has,
to our knowledge, not been achieved [12–15]. Monte Carlo simulations have indicated that particle
alignment and the effect of the particle aspect ratio are equally important in two dimensions as
in three dimensions. Additionally, the reduction of dimensionality limits the degrees of freedom
of the particles, and therefore alignment, defects or the formation of liquid-crystalline metaphases
might have different effects compared to percolation in three dimensions. In our effort to improve
on previous attempts describing percolation in two dimensions, we apply Percus-Yevick theory.
This theory has been extended from liquid state theory to percolation by Coniglio et al. [16] and
has, to our knowledge, not been applied to percolation theory in two dimensions.

1.3 Liquid crystals

Anisometric particles can form liquid crystal phases, which are partially ordered metaphases be-
tween the liquid and the crystal phase. The phase behaviour of hard particles suspended in a liquid
host medium is driven by density, and the resulting liquid crystal is called lyotropic. Discussing the
full phase behaviour of lyotropic liquid crystals is beyond the scope of this work and we limit our
treatment to the isotropic, nematic and smectic-A phase. At low particle concentration, rod-like
particles form the isotropic phase, as indicated in the left diagram in Figure 1.2. The isotropic
phase is a phase in which only short-range positional and rotational order is present, and the phase
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Concentration

Figure 1.2: Schematic representation of the isotropic phase (left), nematic phase (middle) and smectic-A
phase (right). Increasing the concentration drives the transition between the phases.

is invariant under both rotation and translation. Upon increasing the particle concentration, it is
entropically favourable to break the orientational symmetry to gain translational entropy. This
partly aligned phase is called the nematic phase. In the nematic phase, the rotational invariance
breaks and particles align along a nematic director ~n, indicated by the arrow in the middle dia-
gram in Figure 1.2. This is a two-sided vector due to the top-down symmetry of rod-like particles.
The rotational symmetry is only partly broken, however, since the phase is still invariant under a
rotation around the director. The degree of alignment increases with the density and is usually
described by the nematic order parameter

S = 〈P2(cos θ)〉, (1.1)

where P2(x) = 3
2
x2 − 1

2
is the second order Legendre polynomial, and θ is the angle between the

long axis of the particle and the local nematic director. The nematic order parameter S ranges
from −1/2 to 1, where S = 0 corresponds to the isotropic phase (no alignment) and S = 1
indicates perfect alignment. Negative values of S correspond to alignment in the plane away from
the nematic director ~n. The isotropic-nematic transition is often described via Onsager theory,
which is exact in the limit of infinitely slender rods.

Upon increasing the density even further, a transition to the smectic-A phase occurs. The trans-
lational invariance of the material breaks, as the centres of mass of the rods become located in
well-defined layers. The translational invariance does not break inside the layers, as the rods still
behave liquid-like inside each layer. The density-profile of a smectic-A phase is usually described
by a harmonic expansion in the density

ρ(~r, θ) = ρ0(θ) + ρ′0(θ) cos(~q · ~r) + · · · , (1.2)

where ~q is the wave vector along which the layering occurs and which is related to the wavelength
λ of the density modulation by λ = 2π

|~q| .
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1.4 Liquid crystal phases in two dimensions

The above description of liquid crystals is valid in three dimensions. In two dimensions, however,
the behaviour of liquid crystals, especially in the smectic-A phase, is more subtle. The isotropic and
the nematic phase are predicted in a two dimensional material and behave relatively similar to their
three-dimensional counterparts. Theoretical predictions via the Onsager theory, while celebrated
in three dimensions, should be used with caution, as the approximations that it is based on are
generally not justified in two dimensions. Some extensions to Onsager theory have been proposed,
such as adding higher order particle interactions or using more sophisticated theories [17, 18].

The presence of the smectic-A phase in two dimensions is difficult to establish and is a matter
of definition. While in three dimension the smectic-A phase is a phase with positional order along
the director and liquid-like behaviour perpendicular to the director, this liquid-like behaviour is
difficult to establish in a two-dimensional fluid. The difference between a crystalline phase and a
smectic phase has recently been made by associating a change in the decay of correlations between
particles along a layer with a change from smectic-A (exponential decay) to crystalline (algebraic
decay) behaviour [18].

1.5 Thesis outline

In this thesis, we investigate percolation in a two-dimensional model using the Percus-Yevick
closure, and the influence of the positional ordering on percolation in the smectic-A phase. In
chapter 2 we describe the relevant theory used to describe percolation. We have structured the
remainder of this thesis in two parts. First, we investigate the Percus-Yevick closure in two dimen-
sions. Secondly, we extend the connectedness percolation formalism to investigate the influence of
a smectic-A phase on percolation in three dimensions. In detail:

Part I

• In chapter 3, we derive Percus-Yevick theory for percolation and review properties of the
accuracy and a duality with liquid state theory Percus-Yevick. We demonstrate how Percus-
Yevick is normally solved.

• In chapter 4, we extend Percus-Yevick theory to percolation of two dimensional anisometric
particles. We discuss the accuracy of the Percus-Yevick closure by calculating pair connect-
edness functions and comparing it with respect to Monte Carlo simulations. Additionally,
we discuss methods to improve upon the Percus-Yevick closure.

Part II

• In chapter 5, we move on to the model of hard cylinders in three dimensions in the smectic-
A phase. To derive the density distribution function of the smectic-A phase in a perfectly
aligned cylinder fluid, we apply a bifurcation analysis within the framework of density func-
tional theory.

6



• In chapter 6, we reformulate connectedness percolation theory to investigate the effect of the
spatially inhomogeneous smectic-A phase on percolation. We apply this method on the hard
cylinder fluid to investigate the effects of the smectic-A phase on percolation.

• In chapter 7, we summarise the main methods and results of this study. We draw conclusions
on the accuracy of Percus-Yevick closure in two dimensions and on the preliminary results
on percolation in the smectic-A phase. Furthermore, we give an outlook for future research
and the improvement of the methods and models used in this thesis.
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Chapter 2

Continuum Connectedness Percolation

Several formalisms have been used to study percolation theoretically, e.g., percolation on a lattice,
a mapping between continuum percolation to a lattice and full continuum models. In this thesis,
we use the connectedness percolation theory framework that was first derived by Coniglio et al.
[16]. This chapter focusses on the necessary theoretical ingredients and tools. The theory we
present here is based on the descriptions and derivations by [8, 16, 19], and we refer any interested
reader to Coniglio et al. [16] for an in-depth derivation of connectedness percolation theory.

2.1 Clusters

One of the key concepts in percolation theory is a cluster. A cluster is a collection of particles
that are somehow connected to each other. Since multiple clusters of different size can exist
simultaneously, we use the weight-averaged cluster size S as a measure for cluster formation. The
weight-averaged cluster size can be obtained as function of the number of clusters nk consisting of
k particles. The probability that a randomly chosen particle is part of this cluster is sk = knk/N ,
where N =

∑
k knk is the total number of particles. Hence, we can write S as

S =
∑
k

ksk =

∑
k k

2nk∑
k knk

, (2.1)

which can be rewritten to

S =

∑
k knk + k(k − 1)nk

N
= 1 +

∑
k k(k − 1)nk

N
. (2.2)

Next, given any distribution of nk, the total number of pairs of particles that have a direct or an
indirect connection within the same cluster, Nc, is given by

Nc =
∑
k

(
k

2

)
nk =

1

2

∑
k

k(k − 1)nk. (2.3)

Inserting this definition in Equation (2.2), we obtain

S = 1 +
2Nc

N
, (2.4)
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where the first term on the right hand side comes from choosing a test particle, as a cluster always
consists of at least one particle. The second term stems from connections that the test particle
has with other particles.

The total number of pairs of particles with direct or indirect connections can be calculated from
concepts from liquid state theory. For simplicity and notational convenience, we first assume spher-
ical particles of equal size and discuss afterwards how to extend this to non-spherical particles. A
useful concept from liquid state theory is the radial distribution function g(~r1, ~r2), which measures
how particles locally order around a test particle [19]. The radial distribution function is defined
as

g(~r1, ~r2) =
ρ(2)(~r1, ~r2)

ρ(1)(~r1)ρ(1)(~r2)
, (2.5)

where ρ(2)(~r1, ~r2)d~r1d~r2 is the pair density distribution. This density distribution gives the prob-
ability of finding a particle at position ~r1 and a particle at ~r2, irrespective of the position of all
other particles. The singlet-density distribution ρ(1)(~ri) is the local particle density at position ~ri.

The definition of g(~r1, ~r2) implies that it can be separated into two different contributions, one
contribution that is due to particles that are connected, and one contribution that arises from
particles that are not part of the same cluster. Hence, we can write

g(~r1, ~r2) = P (~r1, ~r2) +D(~r1, ~r2), (2.6)

where P (~r1, ~r2) is the pair connectedness function that is due to particles that are in the same
cluster, irrespective of all other particles. Similarly, D(~r1, ~r2) is the contribution that arises from
the particles that are not in the same cluster. The probability that the particles at ~r1 and ~r2

are connected is then given by ρ(1)(~r1)ρ(1)(~r2)P (~r1, ~r2)d~r1d~r2. These definitions imply that we can
write Nc as

Nc =
1

2

∫ ∫
d~r1d~r2ρ

(1)(~r1)ρ(1)(~r2)P (~r1, ~r2), (2.7)

where the factor 1
2

compensates for double counting. Hence, the mean cluster size S, as defined in
Equation (2.4), can be written as

S = 1 +
1

N

∫ ∫
d~r1d~r2ρ

(1)(~r1)ρ(1)(~r2)P (~r1, ~r2). (2.8)

This definition of the mean cluster size is exact and valid for any density distribution ρ(1)(~r1). For
an isotropic fluid, where ρ(1)(~r1) = ρ, the pair connectedness function P (~r1, ~r2) only depends on
the distance ~r12 = |~r1 − ~r2| between two particles. Hence, the isotropic mean cluster size reads

S = 1 +
ρ2

N

∫ ∫
d~r1d~r2P (|~r1 − ~r2|). (2.9)

Using the translational invariance of P (|~r1 − ~r2|), this can be written as

S = 1 + ρ

∫
d~r12P (~r12) = 1 + ρ lim

~q→~0
P̂ (~q), (2.10)
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where the Fourier transform P̂ (~q) =
∫

d~rP (~r) exp (i~q · ~r) is introduced, with ~q being the wave
vector.

For particles of anisometric shape we need to introduce their orientation as an additional degree of
freedom. We characterise this orientation by the unit vector ~u, and the orientational distribution
is described by the function ψ(~u). Extending the definition of the mean cluster size (2.10) is now
straightforward by including the orientational dependency of both particles.

S = 1 + ρ

∫
d~uψ(~u)

∫
d~u′ψ(~u′)

∫
d~r12P (~r12, ~u, ~u

′) = 1 + ρ lim
~q→~0
〈〈P̂ (~q, ~u, ~u′)〉u〉u′ . (2.11)

Here, the orientational average is 〈(. . . )〉u =
∫

d~u(. . . )ψ(~u) [8].
The onset of a material-spanning cluster takes place if the mean cluster size S diverges, which

implies that, in the thermodynamic limit, at least one cluster exists with infinitely many particles.
The critical density ρp at which this happens is called the percolation threshold.

2.2 The connectedness Ornstein-Zernike Equation

To calculate the mean cluster size S from Equation (2.11), we need a method to calculate the
pair connectedness function P (~r1, ~r2). This function can be calculated from the connectedness
Ornstein-Zernike equation [16], a general expression of which is given by

P (~r1, ~r2, ~u1, ~u2) =C+(~r1, ~r2, ~u1, ~u2)+∫
d~u3ψ(~u3)

∫
d~r3ρ

(1)(~r3)C+(~r1, ~r3, ~u1, ~u3)P (~r3, ~r2, ~u3, ~u2).
(2.12)

The connectedness Ornstein-Zernike equation links the unknown pair connectedness function
P (~r1, ~r2, ~u1, ~u2) to the direct connectedness function C+(~r1, ~r2, ~u1, ~u2). The direct connectedness
function C+(~r1, ~r2, ~u1, ~u2) represents all connections between two particles that are devoid of so-
called ‘bottleneck particles’, i.e., if we were to remove an arbitrary intermediate particle from the
connection, the two particles at ~r1 and ~r2 would still be connected. The pair connectedness func-
tion P (~r1, ~r2, ~u1, ~u2) represents all possible connections, including connections with one or more
bottleneck particles. The second term in the Ornstein-Zernike Equation (2.12) represents all pos-
sible ways to connect the particles at ~r1 and ~r2 via these bottleneck particles. Connections that
have a bottleneck particle are called nodal connections.

Equation (2.12) simplifies in Fourier domain for a constant density distribution ρ(1)(~r3) = ρ to
the algebraic equation

P̂ (~q, ~u1, ~u2) = Ĉ+(~q, ~u1, ~u2) + ρ〈Ĉ+(~q, ~u1, ~u3)P̂ (~q, ~u3, ~u2)〉~u3 , (2.13)

where Ĉ+(~q, ~u1, ~u2) is the Fourier transform of the direct connectedness function. While this
simplification is often not possible when the density ρ(1)(~r3) is non-constant, we show a special
case in chapter 6 for which it can be similarly simplified. If the angular distribution is uniform,
we can simplify Equation (2.13) even further to

10



〈〈P̂ (~q, ~u1, ~u2)〉~u1〉~u2 =
〈〈Ĉ+(~q, ~u1, ~u2)〉~u1〉~u2

1− 〈〈Ĉ+(~q, ~u1, ~u2)〉~u1〉~u2
. (2.14)

Hence, in an isotropic suspension the percolation threshold is obtained as

ρp =
1

〈〈Ĉ+(0, ~u1, ~u2)〉~u1〉~u2
. (2.15)

While the connectedness Ornstein-Zernike Equation (2.12) presents a way to calculate P (~r1, ~r2, ~u1, ~u2)
from C+(~r1, ~r2, ~u1, ~u2), C+(~r1, ~r2, ~u1, ~u2) cannot be calculated exactly. Therefore we need a sec-
ondary (approximate) closure relation that either proposes a specific expression for C+(~r1, ~r2, ~u1, ~u2)
or a secondary equation to relate P (~r1, ~r2, ~u1, ~u2) and C+(~r1, ~r2, ~u1, ~u2). Several percolation closure
relations exists and most of them are based on corresponding ideas from liquid state theory, where
several very accurate closures have been developed [19]. We discuss how to derive these closures
in detail in the next section.

2.3 Closure theory

In this section we discuss several closures and what their physical basis is. Up to this point,
Equation (2.13) and Equation (2.11) and the functions P and C+ are quite abstract. To facilitate
our discussion of closure relations, we use some elements from graph theory, since these functions
can be neatly expanded in graphs (or diagrams). We only discuss relevant concepts of graph theory
and refer any interested reader to Hansen and McDonald [19] and references therein.

We start by defining the Mayer f -function, which is a useful quantity in percolation as well as
liquid state theory. The Mayer f -function is defined as

f(1, 2) = exp(−βU(1, 2))− 1, (2.16)

where β = (kBT )−1, with kB the Boltzmann constant and T the temperature, and U(1, 2) is the in-
teraction potential between particles 1 and 2. Here, (1, 2) is a simplified notation for (~r1, ~u1, ~r2, ~u2).
For particles with a hard core, for example, the potential and the Mayer function can have two
different values: U(1, 2) =∞ and f(1, 2) = −1 if the particles overlap, otherwise U(1, 2) = 0 and
f(1, 2) = 0. Similar to the definition of P (1, 2), it turns out useful to split f(1, 2) into two different
functions

f(1, 2) = f+(1, 2) + f ∗(1, 2), (2.17)

where
f+(1, 2) = exp(−βu+(1, 2)) (2.18)

is the connectedness Mayer function, and

f ∗(1, 2) = exp(−βu∗(1, 2))− 1 (2.19)
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is the blocking Mayer function. Here, u+(1, 2) is the connectedness potential and u∗(1, 2) is the
blocking potential. How we determine these potentials is dependent on the connectivity criterion
for particle pairs. For example in models with ideal particles, i.e., f(1, 2) = 0 everywhere, we
can define particle overlap as the definition of connection. This means that if particles overlap we
obtain

u+(1, 2) = 0, f+(1, 2) = 1, u∗(1, 2) =∞, f ∗(1, 2) = −1, (2.20)

and if particles do not overlap we obtain

u+(1, 2) =∞, f+(1, 2) = 0, u∗(1, 2) = 0, f ∗(1, 2) = 0. (2.21)

The connections between particles in connectedness percolation are well-described using these
connectedness- and blocking-Mayer functions, which can be used to obtain a formally exact ex-
pression for the direct connectedness function C+(1, 2). For this purpose we define a set of diagrams
that consists of two types of particles: ‘white 1-nodes’, which are the labelled particles 1 and 2,
and ‘black ρ-nodes’, which are unlabelled particles. The particles, or nodes, in these diagrams are
connected via Mayer f -, f ∗- or f+-bonds. An example of a diagram with two white 1-nodes, one
black ρ-node and f -bonds between the nodes is

, (2.22)

which, mathematically, represents ∫
f(1, 2)f(2, 3)f(1, 3)d3. (2.23)

Using these definitions, we can write the formal definition of C+(1, 2) as

C+(1, 2) =[All diagrams consisting of two white 1-nodes labelled 1 and 2,

black ρ-nodes and f -bonds, which are free of connecting particles (2.24)

and have a continous path of f+-bonds between the white 1-nodes].

Inspecting these connections (or diagrams) is easiest by noting that we can write

C+(~r, ~u1, ~u2) = C+
2 (~r, ~u1, ~u2) + ρC+

3 (~r, ~u1, ~u2) + ρ2C+
4 (~r, ~u1, ~u2) + ρ3C+

5 (~r, ~u1, ~u2) + · · · , (2.25)

where C+
n (~r) indicates n-body connections, e.g., C+

3 (~r, ~u1, ~u2) stands for the connection as defined
by definition (2.24), consisting of three particles exclusively. The diagrams in the direct connect-
edness function are topologically similar to those in the direct correlation function c(1, 2), which
are given by

c(1, 2) = + + + + + (2.26)

+ + + + · · · ,
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where the double lines represent f -bonds between the particles. The direct connectedness function
is now obtained by decomposing the f -bonds in these diagrams into f+-bonds and f ∗-bonds, and
selecting only those that have a continuous path of f+-bonds between the two white particles.
This expansion for the first two diagrams shown in Equation (2.26) is given by

C+(1, 2) = + + + + + + · · · , (2.27)

where the dashed lines are f+-bonds and the solid lines are f ∗-bonds.

The diagrammatic expansion of C+(1, 2) allows us to insightfully demonstrate how we can make
appropriate approximations on C+(1, 2). Generally, closure relations ignore a set of diagrams in
the infinite series of diagrams in Equation (2.27). One of the conceptually simplest closures is
by simply truncating the series in Equation (2.27) and only including up to n-body connections.
This closure is called the bare sum approximation if only the first term is included, or the virial
approximation. This closure is often in qualitative agreement with simulation results, and in
specific cases also in quantitative agreement. Unfortunately, for most particle shapes, only the
first or the first two diagrams can be calculated (analytically), and therefore the sum is necessarily
truncated somewhere after the first or second term. This closure is especially useful for strongly
anisometric particles in three or more dimensions, where it is remarkably accurate. It is less
accurate for particles with a small aspect ratio, or for fewer dimensions, which we illustrate in the
next section.

2.4 The virial expansion closure

We have shown in Equation (2.25) that the direct connectedness function C+(~r, ~u1, ~u2) can be
written as a low density expansion, where C+

n (~r, ~u1, ~u2) contains all diagrams in definition (2.24)
consisting of n particles. This means that C+

2 (~r, ~u1, ~u2) corresponds to

C+
2 (~r, ~u1, ~u2) = , (2.28)

C+
3 (~r, ~u1, ~u2) corresponds to

C+
3 (~r, ~u1, ~u2) = + + + + , (2.29)

and so on. The virial expansion closure consists of simply truncating this expansion after term n,
therefore neglecting all higher order terms. The easiest virial expansion closure is the second virial
closure, in which only the first term in expression (2.25) is maintained, while all other terms are
ignored.

Equation (2.28) shows that C+
2 (~r, ~u1, ~u2) = f+(~r, ~u1, ~u2). For ideal particles we have shown that

f+(~r, ~u1, ~u2) = 1 if the particles overlap, whereas it is zero if they do not overlap. Hence the
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zero wave vector limit of the Fourier transform Ĉ+
2 (0, ~u1, ~u2) is simply the volume integral over all

possible overlap configurations for fixed ~u1 and ~u2, and is given by

Ĉ+
2 (0, ~u1, ~u2) = f̂+(0, ~u1, ~u2) = lim

q→0

∫
d~r exp(i~q · ~r)f+(~r, ~u1, ~u2) = Vcontact, (2.30)

where Vcontact is the total ‘contact volume’, i.e., the volume in which the two particles overlap. We
are interested in very slender particles, which in two dimensions we model as infinitely thin lines.
In two dimensions the contact volume reduces to a contact area Acontact. This contact area Acontact

can be calculated as
Acontact = L2| sinα|, (2.31)

where α = arccos(~u1 · ~u2) is the angle between the two lines [12]. Hence, by Equation (2.15) and
Equation (2.30) we can obtain the percolation threshold as

ρp =
1

L2

1

〈〈| sinα|〉~u1〉~u2
. (2.32)

The orientational average over α can be carried out explicitly [12], and produces the percolation
threshold

ρp =
π

2L2
. (2.33)

Comparing this predicted density of the percolation threshold with the ‘exact’ value obtained from
Monte Carlo simulations, ρpL

2 = 5.63726(2), we notice that it is a factor 3.6 too low [15]. This
indicates that the second virial approximation is quantitatively inadequate to describe percolation
in two dimensions, even for highly anisotropic particles.

The easiest improvement upon the second virial approximation can be made by including higher
terms in the expansion (2.30). The second term in the expansion, ρĈ+

3 (0, ~u1, ~u2), is the highest
order term that can be calculated analytically. The percolation threshold obtained by including
this term is given by

1 = ρpL
2 2

π
−
(
ρpL

2
)2 3B3

π2
, (2.34)

where B3 is the third virial coefficient given by B3 = 0.5142 . . . [12, 20]. The extracted percolation
threshold is given by ρpL

2 = 2.04 ± 1.50i, which is complex and therefore unphysical. The next
term in Equation (2.30) can only be calculated numerically, and predicts

ρpL
2 = 8.87± 0.06, (2.35)

which is approximately 1.57 times higher than the value obtained from Monte Carlo studies [21][15].
While larger improvements might be obtained by including even more expansion terms, this is
cumbersome. Although cluster-integrals can be obtained numerically to calculate higher order
virials, there are significantly more distinct graphs present at each order in the virial expansion.
For example, the fourth virial term contains 196 different graphs, whereas in the third virial
approximation only five distinct graphs were present, as shown in Equation (2.29). This steep rise
in the number of distinct graphs continues and is therefore unlikely to be usable.
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The slow convergence of the virial closure in two dimensions is striking, considering its high ac-
curacy in three dimensions. While slow convergence of the connectedness virial series has been
observed before, it was in an unrelated model and not directly comparable [22]. For particles with
a hard core, a renormalised density approach known as the Parsons-Lee approximation could be
used. This approximation is often used in three dimensions, where it interpolates between the
Carnahan-Starling and Onsager equation of state. Effectively, it replaces the second virial closure
C+(1, 2) = f+(1, 2) by C+(1, 2) = Γ(η)f+(1, 2), where Γ(η) is the Parsons-Lee correction factor,
dependent on the volume fraction η. In three dimensions, it is given by

Γ(η) =
1− 3

4
η

(1− η)2
. (2.36)

In two dimensions, this correction can be based on any accurate equation of state, e.g., the one
obtained from scaled particle theory. The correction based on the equation of state obtained via
scaled particle theory, is given by

Γ(η) =
1

2

(
1

1− η
− 1

η
ln(1− η)

)
, (2.37)

where η is the volume fraction of the hard-core [23]. Since this expression is only usable for hard-
core anisometric particles, for which we have been unable to find Monte Carlo simulation results,
it is difficult to assess its accuracy. Hence we propose to use a more sophisticated closure than
the virial approximation. The best-known closures in liquid state theory that have been extended
to percolation are i) the Percus-Yevick closure, ii) the generalised mean spherical approximation
closure, and iii) the hypernetted chain closure.

The Percus-Yevick (PY) closure is the simplest of these closures. It ignores all connections in
C+(~r, ~u1, ~u2) that extend beyond the range of a direct interaction between the two labelled nodes.
Hence, all diagrams which do not have a f+-bond or f ∗-bond between the labelled nodes are
ignored. Practically, of the diagrams shown in Equation (2.26), we would ignore

and , (2.38)

but this is done at each level in ρ, hence an infinite, but reduced, set of diagrams is included. The
Percus-Yevick closure is often found to be remarkably accurate in liquid state theory, and some
analytical results also exist in the context of in percolation theory [24, 25].

The generalised mean spherical approximation (GMSA-closure) is an extension of the Percus-
Yevick closure. It is based on a model in which the behaviour of C+(~r) beyond the range of
one f -bond is modelled via analytically solvable Ansätze. The commonly used Ansatz in three
dimensions is based on a Yukawa-like tail as

C+(r > d) = K
e−zr

r
, (2.39)
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where K and z are tunable parameters and d is the total diameter of the particles. An appropriately
tuned closure of this type is analytically solvable for ideal spherical particles in three dimensions
and can be remarkably accurate [26], but its extension to anisometric particles is not trivial [27].

The Hypernetted chain closure (HNC) is a closure that can not be solved analytically. It has
been extended to percolation theory but has been shown to not predict a divergence in the mean
cluster size. Instead, the cluster size converges to a fixed value, hence nullifying the possible use
of this closure to describe percolation [28]. We note, for any reader knowledgeable with integral
equation theories, that hierarchical theories such as the Born-Green hierarchy have also been
extended to percolation but through a different mechanism and are therefore beyond the scope of
this report [29, 30].

Since the Percus-Yevick closure is the conceptually and mathematically, simplest closure that
goes beyond the virial approximation, we investigate the accuracy and capabilities of the Percus-
Yevick closure in the next two sections. The next section focusses on the derivation of the Percus-
Yevick closure for percolation and discusses some known results. In chapter 4, we extend it to
anisometric particles.
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Part I

The Percus-Yevick Closure
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Chapter 3

Percus-Yevick theory in Connectedness
Percolation

3.1 Introduction

In this chapter, we discuss the Percus-Yevick closure and its applicability to percolation. We
start this section by deriving the formal expression for the connectedness Percus-Yevick closure
and subsequently discuss some interesting properties of the closure. We briefly indicate how the
Percus-Yevick closure can be solved for spherical particles and discuss results from literature. In the
next chapter, we extent these methods to percolation for anisometric particles in two dimensions.

3.2 The Percus-Yevick closure

We follow the approach of Coniglio et al. [16] in our derivation of the connectedness Percus-Yevick
closure. The liquid-state Percus-Yevick closure is given by

gPY(1, 2) = e−βU(1,2)

(
1 + ρ

∫
c(1, 3)h(3, 2)d3

)
, (3.1)

where gPY(1, 2) is the radial distribution function (see Equation (2.5)), U(1, 2) is the interaction
potential between particles 1 and 2, c(1, 3) is the direct correlation function between particles 1
and 3, and h(3, 2) = g(3, 2) − 1 the total correlation function [19]. As shown in the previous
section, we can split gPY(1, 2) and e−βU(1,2) = f(1, 2) + 1 into a connectedness part and a blocking
part. Similarly, we can express c(1, 3) as

c(1, 2) = C+(1, 2) + C∗(1, 2), (3.2)

where C+(1, 2) is the direct connectedness function defined in Equation (2.27) and C∗(1, 2) is the
direct blocking function. We can similarly split ρ

∫
c(1, 3)h(3, 2)d3 as

ρ

∫
c(1, 3)h(3, 2)d3 = N+(1, 2) +N∗(1, 2), (3.3)
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where N+(1, 2) = ρ
∫
C+(1, 3)P (3, 2)d3 is the convolution integral in the connectedness Ornstein-

Zernike Equation (2.12) and represents how particles 1 and 2 can be connected via a nodal connec-
tion. N∗(1, 2) represents all nodal connections in which there is no continuous path of f+-bonds
between particles 1 and 2. Rewriting e−βU(1,2) in Equation (3.1) as f+(1, 2) + f ∗(1, 2) + 1, gives

gPY(1, 2) = (1 + f(1, 2))(1 +N(1, 2)) = (1 + f+(1, 2) + f ∗(1, 2))(1 +N+(1, 2) +N∗(1, 2)). (3.4)

Next, we can prudently investigate which combination of these diagrams allow for a connection
between the two labelled particles 1 and 2, and which ones do not. This allows one to rewrite the
previous equation as

gPY(1, 2) = f+(1, 2) + f+(1, 2)N(1, 2) + f ∗(1, 2)N+(1, 2) +N+(1, 2)

+ (diagrams which contain no continuous path of f+ bonds between 1 and 2).
(3.5)

Hence, by use of g(1, 2) = P (1, 2) +D(1, 2) we obtain the expression

PPY(1, 2) = f+(1, 2) + f+(1, 2)N(1, 2) + f ∗(1, 2)N+(1, 2) +N+(1, 2), (3.6)

which is the Connectedness Percus-Yevick closure in terms of N -diagrams and Mayer functions.
Using the (Connectedness) Ornstein-Zernike equation and definition (3.1) gives

PPY = e−βu
+(1,2)gPY(1, 2)eβU(1,2) + e−βu

∗(1,2)(PPY(1, 2)− C+
PY (1, 2)). (3.7)

3.3 Particle models

In this thesis we investigate two different types of models, which are the ideal particle model and
the concentric shell, or cherry-pit model. Both particle models are shown in Figure 3.1. In the
ideal particle model, the particles are non-interacting and we assume them to be connected if they
overlap. In this case, the Percus-Yevick closure simplifies to

P (1, 2) = 1 Overlap, (3.8)

C+(1, 2) = 0 No overlap, (3.9)

where the first statement is exact and only the second is an approximation. In the cherry-pit
model, the Percus-Yevick closure simplifies to

P (1, 2) = 0 Hard core overlap (3.10)

P (1, 2) = gPY(1, 2) Connectivity shell overlap (3.11)

C+(1, 2) = 0 No overlap, (3.12)

where gPY(1, 2) is the Percus-Yevick radial distribution function that has to be evaluated explicitly.
Since gPY(1, 2) = 0 for hard core overlap, we can simplify this expression to

P (1, 2) = gPY(1, 2) Overlap of hard cores or connectivity shells (3.13)

C+(1, 2) = 0 No overlap (3.14)

Both the ideal and the cherry-pit model have been solved analytically or numerically for spherical
particles in three dimensions. The cherry-pit model can only be solved analytically for a limited
range of connectivity shell sizes [25].
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(a)

d σ

(b)

Figure 3.1: (a) The ideal particle model. Particles have a diameter d, and can freely overlap. We define
these particles to be connected if they overlap. (b) The cherry-pit particle model. These particles have a
hard core of diameter σ, and a shell around this hard core that has a total diameter of d.

3.4 Note on the accuracy of Percus-Yevick

Percus-Yevick is often found to be remarkably accurate for hard core particles at low to medium
densities in liquid state theory, but seems to be less accurate in percolation theory [25]. To
investigate the origin of this apparent difference in accuracy, DeSimone et al. [25] analysed the
Percus-Yevick closure diagrammatically. They used a relatively simple argument that indicates why
liquid state Percus-Yevick might be more accurate than Percus-Yevick applied to the percolation
problem at ρ2-level. For ideal particles, this is most evident by inspecting the direct correlation
function c(1, 2)

c(1, 2) = cPY(1, 2) + + + · · · , (3.15)

which shows that, at a ρ2-level, the difference between the Percus-Yevick cPY and the exact c
are two diagrams which are of a parallel type [25]. The differences between the two disregarded
diagrams is a single f -bond. Since the f -bond has a value of −1 when the particles overlap, the
diagrams cancel approximately for most of their domain. For percolation, however, this turns out
to not be the case, and we can write the direct connectedness function C+(1, 2) as

C+(1, 2) = C+
PY(1, 2) + +

1

2
+ · · · , (3.16)

where the dashed lines represent f+-bonds and the solid lines represent f ∗-bonds. The pre-factor
1/2 is the weight associated with the diagram. This weight stems from the expansions of f -bonds to
f+- and f ∗-bonds. Due to the pre-factor 1/2 these two diagrams do not even approximately cancel,
explaining why connectedness Percus-Yevick theory is not as accurate as liquid state Percus-Yevick.

3.5 Duality in Percus-Yevick

There exists an interesting analogy between liquid-state Percus-Yevick for hard particles and per-
colation Percus-Yevick for ideal particles. Comparing the Percus-Yevick percolation closure for
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ideal particles, Equations (3.8) and (3.9), to the equivalent closure in liquid state theory for hard
particles

h(1, 2) = −1 Overlap, (3.17)

c(1, 2) = 0 No overlap, (3.18)

shows that a deeper connection between correlation and percolation can be made. This can be
demonstrated explicitly by replacing P (1, 2) and C+(1, 2) in the connectedness Ornstein-Zernike
Equation (2.12) and the Percus-Yevick closure with −h(1, 2), −c(1, 2) and ρ → −ρ, which leaves
the functional form of the (connectedness) Ornstein-Zernike equation and the Percus-Yevick closure
invariant. Hence, we can directly link the mean cluster size in percolation to the equation of state
of the corresponding hard core particles via

S =
1

β

(
dρ

dpc

)
T

, (3.19)

where pc is the pressure obtained from Percus-Yevick integral equation theory via the compress-
ibility route. This link between the mean cluster size S and the pressure pc has been used by
Torquato and Jiao [31] to study the effect of dimensionality on the percolation threshold. The
pressure pc can be expanded as β pc

ρ
= 1+B2ρ+B3ρ

2 + . . . , where Bn are virial coefficients of order

n. Equation (3.19) can therefore also be used to directly link Percus-Yevick virial coefficients to
Percus-Yevick connectedness virial coefficients via

C+(PY )
n = (−1)n−2nB(PY )

n for n ≥ 2, (3.20)

where C
+(PY )
n = 〈〈C+

n (0, ~u1, ~u2)〉~u1〉~u2 . Since Percus-Yevick predicts the exact B2 and B3, we also
obtain the exact values for C+

2 and C+
3 . Incorrect values are obtained for n ≥ 4, which is due

to the fact that connectedness Percus-Yevick is only exact up to the first order in the density
ρ. Interestingly, the duality between hard particle fluids and percolation of ideal particles is only
exactly true for the virial approximation up to the first order in the density, and for Percus-Yevick
[31]. Any closure that is correct to a higher order in the density ρ breaks this duality.

3.6 Analytical solutions

The main reason for the popularity of the Percus-Yevick closure is that analytical solutions can be
obtained. The Percus-Yevick closure, combined with the connectedness Ornstein-Zernike equation,
can be solved via two methods. The first method is based on Laplace transforms, while the second
method is based on the Wiener-Hopf factorisation technique, and is often referred to as Baxters
method [32–34]. Both methods have advantages and disadvantages, but the Wiener-Hopf factori-
sation is the only method that has been extended to cherry-pit models and anisometric particles.
The common disadvantage of both models is, surprisingly, that they cannot be solved analytically
in even dimensions [32, 34]. The reason for this is of geometrical nature, and only recently a
semi-analytical solution has been derived for even dimensions [35, 36]. Analytical solutions are
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available in odd dimensions D = 1 up to D = 7, while for D ≥ 9 numerical methods are necessary
[37]. Since the Wiener-Hopf technique is best suited for the problem at hand, we focus on this
method only.

We derive the Wiener-Hopf factorisation method in Appendix A and only discuss the main re-
sults here. Using the Wiener-Hopf technique, we can reduce the connectedness Ornstein-Zernike
equation to a coupled set of integro-differential equations

Pk(r) = Q(r) + λ

∫ d

0

dsQ(s)Pk(|r − s|), r ≥ 0 (3.21)

and

C+
k (r) = Q(r)− λ

∫ d

r

dsQ(s)Q(s− r), 0 ≤ r ≤ d. (3.22)

where λ = ρ(2π)k, D = 2k + 1 is the dimension, and Q(r) is an auxiliary function [37]. We define
Pk(r) and C+

k (r) recursively as

Pk(r) =

∫ ∞
r

dssPk−1(s) (3.23)

and

C+
k (r) =

∫ d

r

dssCk−1(s), (3.24)

where P0(r) = P (r) and C+
0 (r) = C+(r). Equation (3.21) and Equation (3.22) can be solved for

P0(r) and C+(r) by differentiating k-times with respect to r. Equation (3.21) can be solved for
Q(r) if P0(r) is known in the region 0 ≤ r ≤ d, and therefore Equation (3.22) can be solved for
C+

0 (r). The mean cluster size S is given by

S =
1(

1− λ
∫ d

0
drQ(r)

)2 , (3.25)

and therefore it is only necessary to solve Equation (3.21).

We know that P0(r) = 1 for 0 ≤ r ≤ d for the ideal particle connectivity criterion, and these
equations are trivial to solve. Less trivial is the cherry-pit model, but a solution strategy exists
nonetheless. In our effort to demonstrate the peculiarities of the Percus-Yevick closure, we review
some known analytical results in the next few sections.

One dimension

First we discuss the ideal particle model in one dimension. Equation (3.21) needs to be solved for
k = 0, in which case we obtain

Q(r) = Q0 =
1

1 + η
, 0 ≤ r ≤ d (3.26)
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and the mean cluster size is therefore given by

SPY = (1 + η)2, (3.27)

where η = ρd. Here ρ is the number density and d the diameter of a sphere. We immediately
extract that the percolation threshold for this model is at η →∞. The one-dimensional percolation
model can be exactly solved as

S =
2− e−η

e−η
, (3.28)

which also predicts a percolation threshold at η →∞ [38]. We find that the Percus-Yevick results
are exact up to the second order in the density, in agreement with the diagrammatic definition.
Interestingly, while the Percus-Yevick closure in one dimension produces the exact equation of
state in liquid state theory, it does not yield the exact mean cluster size in percolation theory [37].

Next, we focus our attention on the cherry-pit model. In this model, the radial distribution
function gPY(r) must be calculated a priori, since P (r) = gPY(r) within the connectivity shell.
Fortunately, gPY(r) is known analytically [39]. The derivation for the cherry-pit model is slightly
more involved, and the resulting equations can only be solved over a limited range of σ/d. For a
hard core diameter of σ and total particle (i.e., hard core plus connectivity shell) diameter d, we
can solve the Percus-Yevick closure in the range 1/2 ≤ σ/d ≤ 1. This derivation has been applied
to a three-dimensional model by DeSimone et al. [25], and our derivation for the one-dimensional
case is discussed in Appendix E.

The mean cluster size S for the range 1
2
≤ σ/d ≤ 1 is given by

SPY =
(η + σ + 2ησ)2

(1− η)2σ2
, (3.29)

where η is the volume fraction of the hard core, σ is the diameter of the hard core and we have
set d = 1 for convenience. Equation (3.29) shows that the mean cluster size diverges at the close-
packing packing fraction ηcp = 1 for all 1/2 ≤ σ ≤ 1 with the critical exponent γ = 2. The exact
result for the mean cluster size S is known due to Drory [40]

S = 2 exp

[
ρ(1− σ)

1− ρσ

]
− 1, (3.30)

and also diverges at the close packing fraction.

While these results suggest that Percus-Yevick theory provides acceptable results in one dimension,
the percolation threshold is trivial for both models and the agreement is not necessarily indicative
of the accuracy of Percus-Yevick theory. Secondly, it turns out that the cherry-pit model needs
to be treated with care. By inspecting Equation (3.21) just inside and just outside of the connec-
tivity shell, it can be shown that the pair connectedness function P (1, 2) is negatively valued just
outside the connectivity shell. Since the pair connectedness function is related to the probability
of finding two particles connected, it is positively valued by definition. While similar problems are
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known to occur in liquid state Percus-Yevick theory, it has not been reported for Percus-Yevick
in percolation. It has recently been discussed that this inconsistency might actually indicate that
Percus-Yevick theory breaks down completely above the density where gPY(1, 2) develops a region
that is negatively valued [41]. Therefore we argue that, while predicting the correct percolation
threshold, Percus-Yevick theory is not well-suited to describe percolation in one dimension.

Three dimensions

Ideal particles in three dimensions can be treated in a similar manner as the one-dimensional case.
The mean cluster size for this model is given by

SPY =
(1 + η)4

(2η − 1)2
, (3.31)

where η = ρπ/6d3. We immediately see that the percolation threshold is reached for ηc = 1/2
and the critical exponent of the mean cluster size γ = 2. This estimated percolation threshold
is approximately 46% higher than Monte Carlo results for the same model [31]. The physical
dimensions of a cluster can be obtained by using a small wave vector expansion of the mean
cluster size and writing it in Lorentzian form [16], i.e., by expanding the wave vector dependent
mean cluster size

S(~q) =
1

1− ρC+(~q)
, (3.32)

as

S(~q) =
S

1 + ζ2|~q|2
, (3.33)

where ζ is the correlation length. This length contains information about the spatial cluster
dimensions. The correlation length can be written as

ζ/d =

√
η(16 + η(11 + 4η))

20(1 + η)4

√
S, (3.34)

which diverges at the percolation threshold with the critical exponent ν = 1. Hence, from hyper-
scaling relations, we can deduce that the fractal dimension is df = 5

2
[38].

The cherry-pit particle model has been solved analytically by DeSimone et al. [25] for the same
connectivity range as we presented for the one-dimensional case. The mean cluster size S can be
calculated analytically, but its expression is not insightful. In Figure 3.2, we plot the percolation
threshold obtained via Percus-Yevick theory (blue line) and the percolation threshold obtained
via Monte Carlo simulations (dots) as a function of the connectivity shell thickness σ/d [25].
We observe that, qualitatively, Percus-Yevick predicts the correct dependence of the percolation
threshold on σ/d, while it is quantitatively inaccurate. It can be shown that the critical exponent
for the mean cluster size is γ = 2 and the critical exponent for the correlation length ν = 1. Hence
its critical behaviour is similar to that of ideal particles in three dimensions. We do note that, in
contrast to the one-dimensional cherry-pit model, we do not find the Percus-Yevick closure to be
unphysical, as P (1, 2) is positively valued everywhere below the percolation threshold.
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Figure 3.2: The reduced density ρd3 as a function of the hard core fraction σ/d. The blue line indicates
the percolation threshold for the cherry-pit model, obtained via the Percus-Yevick closure. The dots are
Monte Carlo results for the same model. Graph reproduced from [25].

3.7 Two dimensions

These results indicate that Percus-Yevick theory is an interesting candidate to describe percolation
quantitatively. The presented results are remarkably better than those obtained by the second
virial approximation. While Percus-Yevick is often used for its simplicity and the existence of
analytical results, this is only true for odd dimensions. In two dimensions, both the Laplace
transform solution strategy and the Wiener-Hopf factorisation method cannot be used to derive
analytical solutions due to geometrical reasons1. A method that uses the Wiener-Hopf factorisation
method to rewrite the Ornstein-Zernike in a similarly coupled set of integro-differential equations
has recently been derived, but does not allow for an analytical solution either [35].

Several methods have been devised to cope with this inability to analytically describe two-
dimensional models within the Percus-Yevick approximation. One prominent method is based on
an interpolation between a one-dimensional and a three-dimensional fluid to derive an accurate
(but approximate) representation of the hard-disk correlation function in the PY approximation.
These interpolations can be simply mapped onto percolation due to the duality between liquid state
theory and percolation theory in the Percus-Yevick approximation [43–45]. The mapping by Baus
and Colot [44] has been extended to percolation by Torquato and Jiao [31] and does not predict a
percolation threshold, which is also true for the methods developed by Leutheusser [43] and Rosen-
feld [45]. The semi-analytical method by Adda-Bedia et al. [35] could be extended to percolation.

1The Laplace transform technique necessarily relies on a decomposition of the convolution in the Ornstein-
Zernike equation via a bipolar coordinate transform. This transform is, however, singular in two dimensions [42].
The Wiener-Hopf factorisation method is more technical in nature and is discussed in Appendix B.
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While in three dimensions, the Wiener-Hopf factorisation method reduces the Ornstein-Zernike
equation to two integral equations that extend only over the range of the connection, this is not
true in two dimensions. One of the equations still extends over an infinite domain and it does
therefore not reduce the complexity of (numerically) solving the connectedness Ornstein-Zernike
equation. Using their factorisation method, the percolation threshold can be investigated via the
Percus-Yevick connectedness virial coefficients, which are trivially extracted. Unfortunately, we
have found the convergence of this connectedness virial series to be too slow to be of practical use.

Hence, the only method available is a direct numerical evaluation of the Percus-Yevick equations.
To our knowledge no reported results exist for the Percus-Yevick closure in percolation of two-
dimensional models. The numerical methods we use are discussed in Appendix F.

In Figure 3.3, we plot the mean cluster size of an ideal disk model as a function of the scaled
density ρd2. We have indicated the percolation threshold obtained from Monte Carlo simulations
by Mertens and Moore [15] in orange, and the second virial approximation threshold in blue. We
observe that the cluster growth is almost monotonic, only slightly deviating from an exponential
growth for ρd2 < 1. At ρd2 ≈ 6 we approach the edge of the region of convergence of our method as
indicated by the noise present in the plot. We find no indication for the presence of a percolation
threshold in Percus-Yevick theory in two dimensions.

d

Figure 3.3: The mean cluster size S as a function of the scaled density ρd2. The predicted threshold
via both second virial approximation and Monte Carlo simulations are indicated in orange and blue,
respectively. We observe a uniform exponential behaviour for all densities.

The widely different behaviour between D = 1 (no percolation threshold at finite densities) on one
side, and D = 3 (percolation threshold at finite density) on the other side indicates that somewhere
between D = 1 and D = 3 the connectedness Percus-Yevick closure changes its prediction. Yet,
due to the limited numerical accuracy we cannot be certain that the change occurs at D = 2
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exactly. It is possible to inspect Percus-Yevick theory at non-integer dimensions in order to gain
insight if there is indeed some limiting behaviour for D = 2 [46]. In Figure 3.4a, we plot the mean
cluster size for various fractional dimensions between D = 1 and D = 3 as a function of the D-
dimensional volume fraction, defined by η = 2πD/2ρ/(DΓ(D/2)), where Γ is the gamma-function
[46]. In Figure 3.4b we plot the derivative of the logarithm of the mean cluster size with respect to
the volume fraction η. This derivative indicates whether the growth is sub- or super-exponential.
We obtain the analytically known results for D = 1 and D = 3 with a divergence at ηc = ∞ and
ηc = 1/2, respectively. Figure 3.4b clearly indicates that for D < 2 we obtain sub-exponential
growth, while we have super-exponential growth for D > 2. While this condition is in no way
a measure to locate the percolation threshold, it does highlight that there is indeed a change of
behaviour around D = 2. For D > 2.5 we have established the presence of a percolation threshold
numerically, where the expected scaling of S ∼ |ρ− ρp|−γ near the threshold is present. For D < 2
we do not obtain comparable results. This observed change of behaviour around D = 2 might
indicate that D = 2 is the upper dimension for which Percus-Yevick does not predict a presence
of the percolation threshold at a finite density for ideal particles.
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Figure 3.4: (a) The mean cluster size for D = 1 up to D = 3 for various non-integer dimensions as
function of the volume fraction η. (b) The derivative of logS with respect to the volume fraction η for
various densities.

The cherry-pit model

The cherry-pit model in two dimensions has been investigated via Monte Carlo studies by Lee and
Torquato [47, 48]. We have used a direct numerical evaluation of the Percus-Yevick equations and
find that we are unable to determine the percolation transition for a large range of parameters, as
we can not iterate to densities close enough to the percolation threshold to estimate its presence.
While we do observe diverging behaviour in the mean cluster size S, we do not obtain the expected

27



universality, i.e., the critical exponent is expected to be independent of σ/d, yet varies significantly
in our numerical study. Secondly, we again observe that Percus-Yevick theory yields unphysical
results for the cherry-pit model as indicated in Figure 3.5, where we observe a small region just
outside of r/d = 1 in which PPY(r) is negative. While this occurred at all η 6= 0 in the one-
dimensional case, in two dimensions it only happens in a limited range of volume fractions η.
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r/d

0

1

2

3

4 gPY(r)
PPY(r)

Figure 3.5: The pair connectedness function PPY(r) and the radial distribution function gPY(r) as a
function of the distance r/d. Here ρd2 = 1.21 and σ = 0.8d. The pair connectedness function is negatively-
valued around r/d = 1, which is not physical.

The two presented models for isotropic particles in two dimensions indicate that the Percus-Yevick
closure for percolation is not an accurate closure in two dimensions, leaving us unable to find or
even estimate the location of the percolation threshold. For the densities we are able to probe, we
find that the relative error of Percus-Yevick theory to Monte Carlo results is larger than that of
the second virial approximation, and therefore the added complexity due to the more sophisticated
closure does not pay off. This holds for both the ideal particle model and the cherry-pit model.
Secondly, the breakdown of Percus-Yevick theory for the cherry-pit model, with partly negative
values for PPY(r) just outside the hard core, indicates that Percus-Yevick is not well-suited to
describe percolation in two dimensions.

While these results do not give much hope for the accuracy of the Percus-Yevick closure for
anisometric particles, it is not necessarily problematic. The additional orientational degrees of
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freedom present in a model with anisometric particles might add enough novelty that it could still
be used to describe percolation in two dimensions for anisotropic nanofillers. This we address in
the next chapter.
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Chapter 4

Extension to anisometric particles

4.1 Introduction

In this chapter we extend the Percus-Yevick closure to anisometric particles of arbitrary shape.
The two main methods to extend the (liquid state) Percus-Yevick closure to anisometric particles
are the Interaction Site Model (ISM) and the basis-function expansion [49][50].

ISM

C-ISM or Connectedness-Interaction Site Model-based methods are based on the theory by Chan-
dler and Anderson [49]. In this model it is assumed that each molecule is composed of m rigidly
connected spheres, which are allowed to overlap within a molecule. Using this simplification, the
pair connectedness function can be rewritten into a site-site connectedness function, which is the
pair connectedness function of pairs of spheres on each molecule. This site-site connectedness
function is linked to the pair connectedness function, but does constitute an irretrievable loss of
information, since P (1, 2) cannot be reconstructed from the site-site connectedness function.

Using this formalism, it is possible to derive an Ornstein-Zernike-like relation which has to be
supplied with a closure. The Percus-Yevick closure is one of the closures that has been extended
to this formalism and has indicated qualitative agreement [51][52]. The C-ISM formalism has
some important defects, however. First of all, the C-ISM equations are by definition pre-averaged.
Hence angular correlations are not easily extracted. Secondly, the method can show an unphysical
dependence on the presence of ‘auxiliary’ sites, which are sites that label a point in a molecule, but
do not contribute to the intermolecular connectivity. Thirdly, some angular-dependent quantities
are not always properly represented and this appears to be independent of the used closure [19].
The reason for this can be found mainly in the fact that ISM is not ‘diagrammatically proper’.
This means that the diagrammatic expansion of the ISM-Ornstein-Zernike includes diagrams that
are not present in the normal Ornstein-Zernike equation. Hence, C-ISM is, by construction, not
(fully) correct and caution should be taken when using these equations.

An extension to ISM has been made by Chandler, Sibley and Ladanyi (CSL) that corrects
these deficiencies at the cost of increased complexity [53]. This method has been extended to
connectedness percolation by Lupkowski and Monson [54]. In the low-density limit, a comparison
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of the CSL and C-ISM methods with respect to an direct numerical evaluation of the involved
diagrams, shows that the CSL method is significantly more accurate [54]. A comparison with
Monte Carlo results has not been made, but it is likely that the CSL formalism is more accurate
than the C-ISM formalism [55]. Secondly, it is possible to construct a ISM-like theory that still
contains all orientational information. This can be done by not averaging over both particles, but
only over one particle [56, 57]. Orientational information is still present and can be used to fully
reconstruct the pair correlation functions. Whether the larger computational cost outweighs the
inclusion of orientational information is questionable.

Basis-functions

The second method is based on an expansion of all functions in a basis with the appropriate
symmetry, i.e., a basis that is invariant under a rotation of the entire system. This method has
been used by Blum [50] in liquid state theory, and extends Percus-Yevick to particles with non-
spherical interactions. For an isotropic model, the commonly used basis is the rotational invariant
basis, which in three dimensions is formed by spherical harmonics and in two dimensions by circular
harmonics. While this method retains all orientational information and is diagrammatically proper,
it rests upon the assumption that the expansion is convergent and that we can truncate it after a
small number of included invariants without much loss of information. Unfortunately, this basis-
set expansion has often been found to be only slowly convergent, so a large set of basis functions
is necessary.

While both methods have their advantages and disadvantages, we extend connectedness Percus-
Yevick closure via the basis-function expansion method, since it is diagrammatically proper and
allows us to inspect all angular properties.

4.2 Percus-Yevick for anisometric nanofillers

We follow the approach of Ferreira et al. [58] and extend it to percolation. We expand both the
pair connectedness function P (~r, ~u, ~u′) and the direct connectedness function C+(~r, ~u, ~u′) in the
rotational invariant basis

P (1, 2) =
∞∑

m,n=−∞

Pmn(~r)Ψmn(θ1, θ2) (4.1)

where Pmn(~r) are the projections of P (~r, ~u, ~u′) on the basis and Ψmn(θ1, θ2) are the rotational
invariants. A similar expression is obtained for the direct connectedness function C+(~r, ~u, ~u′). The
rotational invariant basis-functions Ψmn(θ1, θ2) are dependent on the reference frame. Here, we use
the intermolecular frame, which we illustrate in Figure 4.1. In this frame, the rotational invariants
are given by

Ψmn(θ1, θ2) = exp i(mθ1 + nθ2), (4.2)

where θ1 is the angle between the distance vector ~r and the major axis of particle 1, and θ2 is
the angle between the distance vector ~r and the major axis of particle 2. These invariants are
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θ1 θ2

Figure 4.1: Illustration of the intermolecular frame where both particles are disco-rectangles of equal
aspect ratio. In this illustration, ~r is the distance vector between the centres of mass of both particles, θ1

is the angle between the major axis of particle 1 and the centre-to-centre distance vector, and θ2 is the
angle between the major axis of particle 2 and the centre-to-centre distance vector.

orthogonal, and therefore the projections Pmn(~r) are given by

Pmn(~r) =
1

4π2

∫ 2π

0

dθ1

∫ 2π

0

dθ2P (1, 2)Ψmn(θ1, θ2). (4.3)

We can reduce the set of basis functions by noting that the connectedness functions P and C+ are
real functions, and by using the top-down symmetry of the interactions, which reduces the set by

Pmn = P−m−n = P nm = P−n−m. (4.4)

Additionally, the inversion symmetry of the particles implies that P (~r, θ1, θ2) = P (~r, π−θ1, π−θ2)
and therefore both m and n must be even, reducing the total number of independent basis-functions
significantly.

Next, we define the Fourier transforms of P (1, 2) and C+(1, 2) as

P̂ (~q, θ1q, θ2q) =

∫
d~re−i~q·~rP (~r, θ1, θ2), (4.5)

where θ1q is the angle between the symmetry axis of molecule 1 and the direction of the vector
~q, with a similar definition for θ2q. The corresponding projections of P (1, 2) in Fourier space are
related to the real space coefficients through the Fourier-Bessel transform

P̂mn(q) = 2πim+n

∫
drrPmn(r)Jm+n(qr), (4.6)

where JN is a Bessel function of order N defined by

JN(x) =
i−N

π

∫ π

0

eix cos θ cosNθdθ. (4.7)
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Hence, the expansion in Fourier space reads

P̂ (q, θ1k, θ2k) =
∑
m,n

P̂mn(q)Ψmn(θ1k, θ2k). (4.8)

Using these expressions, it can be shown that the Fourier transform of the orientation-dependent
Ornstein-Zernike Equation (2.13) for an isotropic orientation distribution is conveniently rewritten
as

P̂mn(q) = Ĉmn(q) + ρ
∑
l

P̂ml(q)Ĉ−ln(q), (4.9)

where we have abbreviated C+ to C for notational convenience. This ‘molecular’ connectedness
Ornstein-Zernike equation is independent of the basis Ψ(θ1q, θ2q), but couples an infinite number

of the projections P̂mn and Ĉmn in Fourier space. For this formalism to be usable, we cut off the
expansions, so that |m|, |n| < nmax, where we assume that nmax is large enough that the series has
converged. The total number of independent projections is given by 1

4
(nmax + 2)2. It has been

found in liquid state theory, that the convergence of the expansion is low for highly anisometric
particles. Hence, as line segments are the most anisometric particles in two dimensions, we expect
that a large expansion is necessary.

The mean cluster size S is obtained from P (1, 2) as

S = 1 + ρ lim
q→0

∞∑
m,n=−∞

P̂mn(q)〈〈Ψmn(θ1, θ2)〉θ1〉θ2 , (4.10)

which, in the isotropic case, simplifies to

S = 1 + ρ lim
q→0

P̂ 00(q) = lim
q→0

1

1− ρĈ00(q)
. (4.11)

Now that we have reduced the Ornstein-Zernike equation and the mean cluster size to a tractable
form, we move on to the Percus-Yevick closure. In this formalism, we can essentially take two
routes. The first route is to apply the Wiener-Hopf factorisation technique to the current problem.
This method has been applied in liquid state theory in three dimensions by Blum [50, 59] and
Carlevaro et al. [27] and might also be possible in two dimensions. However, since the Wiener-
Hopf technique in two dimensions does not reduce the range of the equations involved, and was not
useful for percolation for ideal disk particles, we believe that, while likely applicable and interesting
for liquid state theory, it is not useful for two-dimensional percolation problems. Therefore we opt
to use a second route, which is to reduce the Percus-Yevick closure (3.7) to a numerically convenient
form.

The Percus-Yevick closure in rotational invariants

To reduce the Percus-Yevick closure to a numerically convenient form, we again follow the approach
of Ferreira et al. [58]. We start by writing the Percus-Yevick closure (3.7) as

C+(1, 2) = gPY(1, 2)− Z(1, 2) Overlap of hard cores or connectivity shells, (4.12)

C+(1, 2) = 0 No overlap, (4.13)
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where Z(1, 2) = P (1, 2) − C+(1, 2). This form is general for both the ideal particle model (for
which gPY(1, 2) = 1) and the cherry-pit model. Next, we expand C+(1, 2) using Equation (4.3),
and split the integrals into two orientational regions, one region where molecules overlap (either
hard core or connectivity shell) (OV) and one region where they do not overlap (NOV). Since we
know that C+(1, 2) = 0 for the NOV region, this integral evaluates to zero. Hence, the projections
of C+(1, 2) can be obtained from the Percus-Yevick closure as

Cmn(r) =
1

(2π)2

∫
OV

dθ1dθ2 [gPY(1, 2)− Z(1, 2)] Ψmn(1, 2). (4.14)

By expanding Z(1, 2) and gPY(1, 2) in rotational invariants, we can simplify the integrand as

Cmn(r) =
∑
m′n′

[
gm
′n′

PY (r)− Zm′n′(r)
]
Am−m

′

n−n′ (r), (4.15)

where gm
′n′

PY (r) are the projections of gPY(r). For ideal particles we obtain gm
′n′

PY (r) = δm′0δn′0, with
δm′0 the Kronecker delta. For non-ideal particles, the projections gm

′n′
PY (r) have to be calculated

separately. The auxiliary function

Am−m
′

n−n′ (r) =
1

(2π)2

∫
OV

dθ1dθ2Ψmn(1, 2)Ψm′n′(1, 2) (4.16)

defines the so-called overlap coefficients that contain all orientational information. It can be shown
that these overlap coefficients are directly linked to the connectedness Mayer f+-function via

f+(~r, θ1, θ2) =
∞∑

m,n=−∞

Amn (r) exp(imθ1) exp(inθ2). (4.17)

Due to symmetry, we can reduce the number of independent components of Am−m
′

n−n′ (r) by

Am−m
′

n−n′ = An−n
′

m−m′ = Am
′−m

n′−n = An
′−n
m′−m. (4.18)

From the orthogonality in Ψ(1, 2) and the definition of the overlap coefficients, we obtain

Am−m
′

n−n′ (r) = δ(m−m′)0δ(n−n′)0, (4.19)

Cmn(r) = gmnPY (r)− Zmn(r), (4.20)

if the particles overlap (either hard core or connectivity shell) for all orientations, and

Am−m
′

n−n′ (r) = 0, (4.21)

Cmn(r) = 0, (4.22)

if the connectivity criterion is not met for any orientation. The overlap coefficients are only
dependent on the particle shape and can therefore be predetermined, which significantly reduces the
computational effort in solving the Percus-Yevick equations. They can usually only be calculated
with numerical methods.
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Figure 4.2: An example of the contact angles for two disco-rectangle particles, where θ2a and θ2b are the
contact angles of the second particle. These angles depend on both θ1 and r.

Overlap Coefficients

The formal expression for the overlap coefficients (4.16) can be rewritten as

AMN (r) =
4

π2

∫ π/2

0

dθ1 cos

[
Mθ1 +

N

2
(θ2a + θ2b)

]
sin
[
N
2

(θ2a − θ2b)
]

N
, (4.23)

where the contact angles for particle 2, 0 ≤ θ2a, θ2b ≤ π depend on both r and θ1, as illustrated in
Figure 4.2 [58]. These angles can, for line segments, be determined analytically as

θ2a(x, θ1) =

{
arccos cos θ1−2x√

1+4x2−4x cos θ1
, for θ1 ≤ arccosx,

θ1 + arcsin 2x sin θ1, for θ1 > arccosx,
(4.24)

θ2b(x, θ1) = π + θ1 − arcsin 2x sin θ1. (4.25)

where x = r/L is the centre-to-centre distance normalised by the length of a line segment, see
Appendix D. In Figure 4.3, we show examples of overlap coefficients AMN for several values for
M and N . We observe that the zeroth order term is the dominant term and the magnitude of
the consecutive terms decrease with increasing M and N . The kink in the overlap coefficients at
r/L = 1/2 is easily explained. For r/L < 1/2 overlap configurations exist for all θ1. For r/L > 1/2
this is not the case, since particle 1 can be oriented in such a manner that the particles do not
overlap for any value of θ2. This transition from always overlapping for all θ1 to overlapping only
for θ1 < θ1t is very sharp, causing the presence of the kink at r/L = 1/2.
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Figure 4.3: Examples of the overlap coefficients AMN for various values for M and N . The kink present at
r/L = 0.5 is due to the sharp change in overlap probability, see the main text.

4.3 Ideal anisotropic nanofillers

Now that we have derived a method to describe percolation in a two-dimensional model with
anisometric nanofillers within the Percus-Yevick approximation, we apply it to an ideal fluid of
infinitely thin sticks. We solve the Equations (4.9) and (4.15) with the same numerical iterative
solver that we have used for the two-dimensional disk fluid in section 3.7. We refer to Appendix F
for details on the numerical method. Due to the projection-coupling in the Ornstein-Zernike
Equation (4.9), more care needs to be taken to ensure convergence. The size of the necessary
basis-set expansion is dependent on the information we want to extract. For the determination
of the percolation threshold, we only demand that the mean cluster size (4.11) is converging for
increasing nmax. For the rotational invariant expansion to converge, we demand that the full
orientational distribution is in agreement with Monte Carlo simulations, at least at low densities
where Percus-Yevick theory is accurate.

In Figure 4.4a, we plot the mean cluster size S for various nmax over a limited range of the reduced
density ρL2. While we observe some variation in the actual value of the mean cluster size S, the
functional behaviour for ρL2 > 1 is independent of the size of the rotational invariant expansion.
Especially the zeroth order approximation significantly deviates from the other expansion sizes.
We quantify this deviation in the mean cluster size as a function of nmax by comparing the relative
deviation with respect to the largest cutoff value we have used, nmax = 20, in Figure 4.4b. We
observe that the deviation is negligible for ρL2 < 1. For ρL2 > 1, the error is especially significant
for the zeroth order approximation (or the pre-averaged approximation), but for nmax > 2 is of the
order of one percent. Hence a small basis set can be used to estimate the presence of the percolation
threshold (if any), and the error in the estimate can be reduced by increasing the basis-set. In
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Figure 4.4: (a) A plot of the mean cluster size for various cut-off sizes nmax as a function of the reduced
density ρL2. (b) A plot of the relative deviation with respect to the nmax = 20 expansion, as a function
of ρL2.

Figure 4.5 we plot the mean cluster size as function of the scaled density ρL2 for nmax = 4 over
a larger range in the scaled density ρL2. Similarly to the ideal disk particles that we discussed in
section 3.7, we observe that the mean cluster size grows exponentially and does not deviate from
this growth up to the edge of the convergence region ρL2 = 15.8. While the convergence in the
ideal disk case was limited by the accuracy of the method itself, here the accuracy of the initial
guess for the iterative solver is the limiting factor. At this density we are 2.6 times further away
from the Monte Carlo prediction of the percolation threshold than the result of the second virial
approximation. This demonstrates that the Percus-Yevick closure is not useful in percolation of
ideal particles in two dimensions. While being a more sophisticated closure than the second virial
approximation, it turns out less accurate than the simple mean field theory for both isometric
and highly anisometric particles. This shows that, at least for ideal particles, Percus-Yevick is an
ill-suited choice as a closure in two dimensions.

4.4 Angular resolution

While Percus-Yevick theory is ill-qualified to describe cluster formation near the percolation thresh-
old, we expect it to be accurate at low densities and moderately accurate at medium densities.
Since the (angular resolved) pair connectedness functions have been obtained from Monte Carlo
simulations, we can discuss both the accuracy of the Percus-Yevick closure at low densities and
the convergence of the rotational invariant basis [21].

We first investigate the angular-averaged pair connectedness function P̄ = 〈〈P (r, θ1, θ2)〉θ1〉θ2
in Figure 4.6 for various densities from ρL2 = 2.5− 5, reminding the reader that ρL2 = 5.63728(2)
is the percolation threshold [15]. We observe good agreement for low densities, yet Percus-Yevick
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Figure 4.5: The mean cluster size obtained via the Percus-Yevick approximation is shown as a function
of the scaled density ρL2. The second virial approximation and the Monte Carlo predictions for the
percolation threshold are indicated in orange and green, respectively.

slightly underestimates the connection probability. Closer to the percolation threshold we expect
the agreement to become worse, which we do indeed observe in Figure 4.6c and Figure 4.6d. The
shape of the pair connectedness functions for r/L < 1 is dominated by overlap effects, and both
the Monte Carlo results and the Percus-Yevick approximation show a similar kink at r/L = 1/2,
which is caused by the sharp change in overlap probability.

To facilitate the comparison between the angular resolved Monte Carlo results and the results from
Percus-Yevick theory, we change the orientational basis from θ1 and θ2 to the more convenient
basis shown in Figure 4.7. This change of basis consists of relabelling θ1 to α and introducing θ
as the angle between the orientation vectors of the two labelled particles. In the isotropic phase,
the θ-angle is the only orientational information necessary to describe percolation for anisometric
nanofillers and therefore we only discuss the dependency of this angle [10]. Using this full angular
information, we are also able to inspect the convergence of the complete rotational invariant
expansion. We find that for θ < π/4 the main features are replicated for nmax > 10 and the
expansion becomes representative for nmax > 16. For π/4 < θ < π/2 the main features are present
for nmax > 6 and the agreement becomes accurate for nmax > 12.

In Figure 4.8a, we plot the angular resolved Percus-Yevick results for θ, where we use nmax = 20
for maximum accuracy in Percus-Yevick theory. The angular resolution for the pair connectedness
function P (1, 2) at low densities is ∆θ = 10◦, whereas at high densities ∆θ = 3◦. The y-axis
is normalised such that, after summation of all angular bins, we retain the angular averaged
pair connectedness function 〈〈P (r, θ1, θ2)〉θ1〉θ2 . We observe that the angle-dependence of the pair
connectedness function is limited to r/L < 1, whereas for r/L > 1 the functions are not dependent
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Figure 4.6: The angular averaged pair connectedness function P̄ (r), both for the Percus-Yevick closure
and Monte Carlo simulations [21].

on the relative orientation θ. We observe the presence of a plateau for which the particles overlap,
independent of the orientation. This plateau should correspond to the Percus-Yevick condition
P (1, 2) = 1 for overlap, but small violations are present, likely due to the (limited) expansion we
employ. Secondly, we observe oscillatory behaviour for 0.25 < r/L < 0.5, which might be reduced
by increasing the cutoff value nmax. The fact that the angle-dependence is limited to r/L < 1
indicates that for ideal particles, the angle-dependence is essentially a matter of whether the two
particles directly overlap or not.

In Figure 4.8b, we plot the comparison between the Percus-Yevick approximation and results
obtained from Monte Carlo simulations for the two selected bins 0 < θ < 10 and 80 < θ < 90, with
other bins being similarly accurate. We observe almost perfect agreement between Percus-Yevick
theory and Monte Carlo simulations. The small differences are of oscillatory nature and can be
negated by increasing the rotational invariant expansion size. This remarkable agreement is not
entirely unsurprising, as Percus-Yevick is exact up to the first order in the density ρ.

Near the percolation threshold, however, the agreement is expected to decrease significantly
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Figure 4.7: The new angular basis, where we have relabelled θ1 as α, and labelled the angle between the
two particles θ.

as shown in Figure 4.9a. Here we plot the Percus-Yevick results and the Monte Carlo results for
the smallest-angle bin and the largest-angle bin. We observe a significant difference between the
Percus-Yevick result and results obtained from Monte Carlo simulations. Yet, we observe that the
features of the pair connectedness functions appear to be in good agreement. This suggests that
the difference in the angular resolved pair connectedness function is mainly caused by the difference
in average connectivity, i.e., the orientation dependency is correct, while 〈〈P (r, θ1, θ2)〉θ1〉θ2 is not.
Indeed, by appropriately density-mapping the Percus-Yevick results onto the Monte Carlo results,
we obtain similar agreement as in the low density case as shown in Figure 4.9b. We do observe a
minor deviation at r/L� 1 for the small angle Monte Carlo results, which we assume to be caused
by an error in the Monte Carlo data. Secondly, we observe a minor deviation at r/L ≈ 0.75, which
indicates that the mapping cannot be done exactly.

The nearly exact mapping between Percus-Yevick calculations and the Monte Carlo simulation
results at high densities suggests that we might be able to extend this mapping to all densities.
We discuss this possibility in the next section.

4.5 Beyond Percus-Yevick

The rescaled density approach

We can apply a mapping to the angular-averaged Monte Carlo results of Figure 4.6 that is similar
to that in the angular resolved pair connectedness functions. For this purpose, it is necessary
to accurately map both the short and long-ranged behaviour of the pair connectedness function.
We find that this mapping can be best fitted under the assumption that the Percus-Yevick mean
cluster size S scales exponentially, while the Monte Carlo mean cluster size scales like in the critical
region as S ∼ |ρMC − ρp|−γ. Hence, we propose a fit of the form

(ρL2)PY = A−B ln(|ρMC − ρp|L2), (4.26)
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Figure 4.8: (a) The angular distribution of the pair connectedness function P (r) obtained from Percus-
Yevick theory for the inter-particle angle θ. (b) Two highlighted angular resolved pair connectedness
functions P (r) for 0 < θ < 10 and 80 < θ < 90 for both Percus-Yevick theory and Monte Carlo
simulations.

where A and B are fit parameters. We show the density-mapping in Figure 4.10. The black
dots represent the density mapping, where we have indicated an uncertainty of ∆(ρL2) = 0.1,
which is both due to the slightly imperfect mapping, and the fact that we have iterated the pair
connectedness function using density increments ∆ρ = 0.1. The blue line represents the fit (4.26),
where A = 7.69 ± 0.01 and B = 4.26 ± 0.02, and the orange line indicates (ρL2)PY = (ρL2)MC.
The fit is within the error bounds for all densities we have compared. While this fit is accurate
within the data range, it cannot be used to extrapolate knowledge of SPY. The usefulness of
this mapping is fully dependent on the information that is to be extracted. While estimates for,
e.g., critical exponents can be obtained, this is likely more easily obtained from the Monte Carlo
simulations themselves. Secondly, this mapping cannot be done for a cherry-pit model, since this
model depends on gPY(r, θ1, θ2), which is only accurate at low densities.

The GMSA-approach

A second heuristic method to go beyond the Percus-Yevick approximation is to functionalise the
missing parts in Percus-Yevick theory with respect to the ‘exact’ Monte Carlo simulations. As the
only assumption in Percus-Yevick theory for ideal particles is C+(1, 2) = 0 for non-overlapping
particles, we relax this condition and use an appropriate description for C+(1, 2) outside the overlap
region. This treatment is therefore similar to the previously discussed Generalised Mean Spherical
Approximation (GMSA). While a GMSA-like approximation has yielded satisfying results in a
three dimensional model, its use was largely facilitated by the analytical solutions [26]. While
it is possible to extract the missing components of C+(1, 2) from the data of the Monte Carlo
simulations, we find it easier to invert our Percus-Yevick solution. We use the Percus-Yevick pair
connectedness function P (1, 2), replace the density in the Ornstein-Zernike Equation by the density
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Figure 4.9: (a) Two highlighted angular resolved pair connectedness functions P (r) for 0 < θ < 3 and
87 < θ < 90 for both Percus-Yevick theory and Monte Carlo simulations. There is a large disagreement
between Percus-Yevick theory and Monte Carlo simulations. (b) The same two angular resolved pair
connectedness functions P (r), compared for different densities of Percus-Yevick theory and Monte Carlo
simulations.

we obtain from the mapping on the Monte Carlo results, and calculate the corresponding C+(1, 2).
In Figure 4.11a, we plot the parts of 〈〈C+(1, 2)〉〉 that the Percus-Yevick closure ignores. This
suggests an Ansatz with an exponentially decaying tail for r/L > 1, whereas for r/L < 1 more care
has to be taken. In Figure 4.11a we plot an example of the angular resolved direct connectedness
function C+(r, θ) for 30 ≤ θ ≤ 40. Indeed, significant oscillations are present for which an Ansatz
is not readily found. Only implementing this correction for r/L > 1, or implementing a correction
to the angular averaged component 〈〈C+(1, 2)〉〉 only, yields unsatisfactory results and we have
therefore not pursued this approach further. We believe that this approach is likely fruitful for
particles that are only lightly anisometric, but too complex for strongly anisometric particles.

The PY-d approach

Besides these heuristic techniques to improve upon Percus-Yevick theory, a more systematic
method exists also. This method is based on a correction that adds the missing diagrams in
Percus-Yevick in an order-by-order approach. Since Percus-Yevick is correct to the first order in
the density, but misses some diagrams in the definition of the second order (and higher) in the
density, the correction includes these missing diagrams systematically. This approximation has
been investigated by several authors and has been shown to be more accurate than the normal
Percus-Yevick approximation for spherical particles. Generally, the predicted percolation thresh-
old using this method is too low [28]. This systematic approach is usually referred to as the PY-d
approximation [28, 60]. For the first order correction in this approach to be useful, we need to
be able to calculate two specific four-particle cluster integrals. These integrals can be calculated
analytically for spherical particles, and therefore it is likely that this contribution might also be
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Figure 4.10: The density-mapping between the Percus-Yevick approximation and Monte Carlo simula-
tions. The orange line indicates (ρL2)PY = (ρL2)MC, the black dots indicate the density mapping with
an uncertainty of ∆(ρL2) = 0.1. The blue curve is the fit (4.26) with parameters A = 7.69 ± 0.01 and
B = 4.26± 0.02.

obtained analytically for disk particles in two dimensions [28, 61]. The cluster integrals for line
segments, however, are more involved and to our knowledge only three particle cluster integrals
have been calculated analytically, while four (or more) particle cluster integrals are usually calcu-
lated via Monte Carlo integration techniques. We prefer not to speculate on the feasibility of this
method for line segments or other anisometric particles.

While more methods exist to study percolation in two dimensions, this was outside the scope of
this thesis. In the next section we continue our study on the effect of the ordering due to the
smectic-A phase on percolation in a three-dimensional model, and we come back to the topic of
percolation in two dimensions in the Outlook.

43



0 1 2 3 4 5
r/L

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

⟨⟨C
+ co
r⟨r
)⟩⟩

ρL2=2⟩5
ρL2=3
ρL2=3⟩5
ρL2=4
ρL2=4⟩5
ρL2=5

(a)

0 1 2 3 4 5
r/L

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

C
+ co
r(r
,θ
)

ρL2=2.5
ρL2=3
ρL2=3.5
ρL2=4
ρL2=4.5
ρL2=5

(b)

Figure 4.11: (a) The angular averaged correction term that corrects the Percus-Yevick assumption
C+(1, 2) = 0 for non-overlapping particles. The tail is an exponentially decaying function for r/L > 1.
(b) The angular dependent correction term, for the bin 30 ≤ θ ≤ 40. Significant oscillatory behaviour for
r/L < 1 is present.

44



Part II

Percolation in a non-uniform spatial
density profile

45



Chapter 5

Smectic-A phase

5.1 Introduction

The effect of liquid-crystalline ordering on percolation in a three dimensional model of slender
nanoparticles has, to our knowledge, only been studied in the isotropic and the nematic phase [62],
where the local density distribution is only dependent on the particle orientations. Continuum
percolation theory has, to our knowledge, not been applied to any other spatially inhomogeneous
phase. The onset of the smectic-A phase in an solution is relatively sensitive to the properties of
the particles, such as the polydispersity, flexibility and particle-particle interactions [63–66]. In the
particular case of carbon nanotube suspensions, the smectic-A phase has not (yet) been observed
experimentally [67]. Theoretically, it has been predicted that, for CNTs, the columnar phase might
pre-empt the smectic-A phase due to the van der Waals interactions [64]. Also, carbon nanotubes
are typically rather polydisperse, which is known to hinder the formation of a smectic-A phase
[65]. Nanowires on the other hand, do exhibit smectic phases, and a fundamental question is how
the positional ordering of the smectic-A phase affects the formation of particle networks [68, 69].
Since the smectic-A phase is ordered only in one direction, whereas it maintains fluid-like in the
other directions, the normal Ornstein-Zernike formalism might be applicable without significant
adjustments. We note that charge transport in a smectic-A phase has been studied with numerical
simulations by Schrader et al. [70], which indicate that the formation of a smectic-A phase hinders
charge transport.

Before we can investigate how the spatial inhomogeneity influences the percolation behaviour, we
need to determine the density profile of the smectic-A phase. In the next sections we discuss
the theoretical concepts necessary to derive an analytical expression for the smectic-A density
distribution using Density Functional Theory (DFT).

5.2 Density Functional Theory

Density Functional Theory is one of the most celebrated theoretical tools to investigate inhomo-
geneous phases and comes in many different flavours. It is based on the mathematical concept of
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functionals, which can be regarded as an extension of functions, i.e., while a function maps a point
x to a complex number as

f(x) : x→ C, (5.1)

a functional maps a function f(x) onto a complex number as

F [f ] : f(x)→ C. (5.2)

The widespread use of classical DFT is based on a set of theorems that show that (1) for any
choice of the volume V , the temperature T and the chemical potential µ, the Helmholtz free
energy F [ρ(~r)] is a unique functional of the equilibrium density distribution ρ(~r), and (2) that
a functional Φ[n(~r)] of the one-particle distribution function n exists, which is minimised if n(~r)
coincides with the equilibrium single-particle density ρ(~r). The value of Φ[n(~r)] at this minimum
coincides with the grand potential. A proof of these two theorems can be found in Hansen and
McDonald [19].

These two theorems show that all relevant thermodynamics is present in the functional Φ[ρ(~r)].
Since the minimum of the functional Φ[ρ(~r)] is the grand potential, we start by writing the grand
potential in terms of the Helmholtz free energy as

Ω[ρ(~r)] = F [ρ(~r)]− µ
∫

d~rρ(~r), (5.3)

where we have constrained the total number of particles via∫
d~rρ(~r) = N. (5.4)

Since our goal is to obtain the smectic-A density distribution, we need to minimise the grand
potential (5.3) with respect to the density. The extrema of a functional, analogously to the
extrema of a function, are obtained by taking the functional derivative as

δΩ[ρ(~r)]

δρ(~r)
= 0. (5.5)

We refer to Engel and Dreizler [71] and references therein for an in-depth discussion on functionals
and functional derivatives. The extrema of Equation (5.3) can now be obtained via

δF [ρ]

δρ(~r)
− µ = 0. (5.6)

This indicates that the equilibrium density distribution function ρ(~r) is obtained from a constrained
minimisation of the Helmholtz free energy. This Helmholtz free energy can be split in an ideal
part and an excess part as

βF = N ln ρν −N + βF excess, (5.7)

where N is the number of particles, ν is a volume length scale, and βF excess is the excess free
energy, that depends only on the particle-particle interactions. The precise form of the volume
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length scale ν is of no consequence in our model. We refer any interested reader to Allen et al.
[72] for a discussion of it.

The Helmholtz free energy (5.7) can be written as a functional of the singlet-density distribution
ρ(~r) as

βF [ρ(~r)] =

∫
d~rρ(~r)(ln ρ(~r)ν − 1) + βF excess[ρ(~r)]. (5.8)

The excess free energy functional βF excess[ρ(~r)] is not known in closed-form. A formally exact
expression for the excess free energy can be derived if the inter-particle potential V (~rN) depends
solely on pair interactions, and consists of a sum of all n-particle cluster integrals, most of which
have no analytical result [19]. Approximations for the excess free energy exist at various levels of
complexity and are often the limiting factor in the accuracy of density functional theory [19].

5.3 The smectic-A density distribution

Expressions for the Smectic-A density distribution have been obtained via several different ap-
proximation for the excess free energy. Elaborate theories take the orientational distribution and
inter-layer particles into account, while the simplest theories are based on perfectly aligned rods
or spherocylinders [73–76]. While all these effects can have a tremendous effect on percolation in a
smectic-A phase, the analytic nature of the perfectly aligned rod model is favoured over the more
complex model that are only solvable numerically [76].

Therefore we follow a slightly modified approach of Mulder [76] to derive the equilibrium density
distribution. In this model, the excess free energy functional is based on the first order component
in the cluster integral expansion, and is given by

βF excess[ρ(~r)] =
1

2
Γ(η)

∫
d~r1

∫
d~r2ρ

(1)(~r1)ρ(1)(~r2)f(~r1, ~r2). (5.9)

Here, f(~r1, ~r2) is the Mayerf -function defined by Equation (2.16), and Γ(η) is the Parsons-Lee
correction term given by

Γ(η) =
1− 3

4
η

(1− η)2
. (5.10)

This correction term effectively includes higher order corrections to Equation (5.9) to account for
the effects of a finite particle aspect ratio1, where η is the global average volume fraction [77, 78].
The use of the Parsons-Lee correction term, or similar, is necessary as higher order terms in the
excess free energy are not negligible for the smectic-A phase of perfectly aligned particles [76, 79].
Better results might be obtained by using a so-called smoothed density approximation, where the
global volume fraction η in Equation (5.10) is replaced by a weighted local value [80].

1Interestingly, this correction term was derived in two completely different manners. It can be derived from a
decoupling approximation, by decoupling the orientational and radial dependency of the radial correlation function,
as shown by Parsons [77]. It can also be derived by a rescaling of the effective excess free energy by interpolating
between that of a sphere and of an infinitely slender rod, as shown by Lee [78].
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We apply the theory on uncapped cylinders with hard core interactions only, in which case the
Mayer f -function is given by

f(~r1, ~r2) = −Θ(D2 − x2 − y2)Θ(L− |z|), (5.11)

where Θ denotes the Heaviside step function, D is the diameter of particle and L is the length of
the particle. Since the Smectic-A phase is a partially ordered phase that is periodic over a length
λ, we can use the following Ansatz for the density distribution

ρ(1)(~r) = ρψ(qz) = ρ

(
1 +

∑
j=1

∆j cos(jqz)

)
, (5.12)

where ∆j is the amplitude of the jth coefficient of the expansion in the density wave and q = |~q| is
the associated wave vector, which is linked to the wavelength by λ = 2π

q
. Inserting Equation (5.9),

(5.11) and (5.12) into Equation (5.8) and taking the thermodynamic limit (i.e., V →∞, N →∞,
and N/V = constant) we obtain the free energy per particle

F [ψ] =
βF [ψ]

N
= ln ρ− 1−Λ +

1

2π

∫ 2π

0

dζψ(ζ) lnψ(ζ) + 4ηΓ(η)

(
1 +

1

2

∞∑
m=1

∆2
mj0(mQ)

)
, (5.13)

where ζ = qz, η = ρπ
4
D2L is the volume fraction of the particles, j0 is the zeroth-order spherical

Bessel function and Q = qL. A stable phase is described by the spatial distribution function that
minimises this free energy per particle. The two control parameters for this spatial distribution
function are the Smectic-A density parameter ∆m and the wave vector Q. The solution must be
stable with respect to both of these variables, hence

δF [ψ]

δ∆n

!
= 0 (n ≥ 1),

δF [ψ]

δQ
!

= 0. (5.14)

Applying these two conditions to Equation (5.13) results in

X(n)({∆i}, Q, η) =
1

2π

∫ 2π

0

dζ cos(nζ) ln

(
1 +

∞∑
k=1

∆k cos(kζ)

)
+ 4ηΓ(η)∆nj0(nQ) = 0 (5.15)

Y ({∆i}, Q, η) = Γ(η)η
∞∑
m=1

m∆2
mj1(mQ) = 0. (5.16)

A one-parameter family of solutions to these equations can be obtained by using a bifurcation
analysis [76]. In a bifurcation analysis we inspect the density modulation for small distances away
from the critical point, which allows us to obtain the functional behaviour of the parameters η,
∆j and Q. Hence, we expand η, ∆j and Q in the parameter ε which denotes the distance from
the bifurcation point, which is the critical density where the nematic phase becomes unstable with
respect to density modulations. These expansions are given by

ηε = η∗ + εη1 + ε2η2 + . . .

∆j = ε∆
(1)
j + ε2∆

(2)
j + . . .

Qε = Q∗ + εQ1 + ε2Q2 + . . . .
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Since the parameter ε is assumed to be much smaller than one, we obtain the density distribution
of the smectic-A phase near the phase transition only, which is indicated by ε = 0.

5.3.1 Zeroth order bifurcation

The Equations (5.15) and (5.16) cannot be solved in their current state, since we have effectively
linked all expansion coefficients {∆j} to Qε and ηε. Yet, we can decouple them on a simple physical
reasoning, as it can be expected that the fluctuations with the largest periodicities have the largest
amplitudes ∆. Hence, we link the largest wave vector to ∆1, the second largest to ∆2 and so on.
This is similar to the Ansatz by Mulder [76]. Using this decoupling, the zeroth order density
distribution is given by

ρ(z)/ρ = 1 + ε∆1 cos(Qz), (5.17)

which leads to the bifurcation point

1 + 8Γ(η∗)η∗j0(Q∗) = 0, (5.18)

j1(Q∗) = 0. (5.19)

This show that the critical density at which the bifurcation occurs is η∗ = 0.338 and the associated
wave vector is Q∗ = 4.493, corresponding to the wavelength λ ≈ 1.39L. The critical volume
fraction η∗ = 0.338 is below the Monte Carlo result of η∗MC ≈ 0.36, whereas the wavelength is too
high compared to the Monte Carlo result λMC = 1.27L [81]. We note that ∆1 is a free parameter
and can be arbitrarily set, as all higher order parameters are scaled to ∆1.

Although Equation (5.17) is valid for small ε, it does not contain information how ε evolves as
function of the volume fraction. To obtain ε as function of the volume fraction, it is necessary to
extend the bifurcation analysis to at least the second order in the volume fraction η.

5.3.2 Higher order bifurcations

While we have only developed the density around the bifurcation point up to the first order in
ε, it is fairly straightforward, though involved, to extend it to higher orders. We do not discuss
the extension here, as a full derivation is presented by Mulder [76]. It turns out to be useful to
define ω0 = Γ(η0)η0 = 0.575 due to our slightly modified excess free energy by inclusion of the
Parsons-Lee correction. Table 5.1 shows the results up to second order in ε.

Table 5.1: Summary of the higher order bifurcation coefficients up to second order in ε with ω0 = 0.575.

0th order 1st order 2nd order
η0 = 0.33774 η1 = 0 η2 = 1

8j0(Q0)
[1
2
∆2 − 1

4
]

Q∗ = 4.493 Q1 = 0 Q2 = −2∆2
2j1(2Q0)/j0(Q0)

∆1 = 1 ∆2 = 1
4(1+8ω0j0(2Q0))

∆3 =
1
2

∆2− 1
12

1+8ω0j0(3Q0)

50



Using the coefficients up to second order in ε, we can write the density distribution ρ(1)(z) as

ρ(1)(z)/ρ = 1 +
3∑
j=1

∆jε
j cos

(
(Q∗ + εQ1 + ε2Q2)j

z

L

)
. (5.20)

We can express ε as a function of η at the level of the second order bifurcation as

ε ∼

√
Γ(η)η

Γ(η0)η0

− 1. (5.21)

In Figure 5.1 we plot the density distribution ρ(1)(z)/ρ obtained by the second order bifurcation
analysis (5.20). We plot both the leading order term in the smectic-A density distribution (i.e.,
ρ(1)(z)/ρ = 1 + ε cos(Q∗z/L)), and Equation (5.20). While the leading order term misses the
sharpening of the distribution, it is a good approximation of the general shape of the distribution
for ε � 1. Figure 5.1b indicates the expansion for ε = 1, where the condition that ε � 1 breaks
down and is therefore not necessarily an accurate representation of the singlet-density ρ(1)(z).
Larger volume fractions cannot be shown without either going to higher orders in ε or numerically
evaluating the coefficients ∆j, Qj and ηj.
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Figure 5.1: Plot of the normalised density distribution function as a function of the position z/L. We plot
both the distribution based on the leading order term ∆1, and on the second order bifurcation density
distribution.

The uncapped cylinders approach is the simplest density functional approach, but ignores many
aspects that are important. While not necessarily intuitive, the onset of a smectic phase in perfectly
aligned particles depends heavily on the particle morphology. For example, it can be shown that a
parallel hard ellipsoid (PHE) model cannot exhibit a smectic phase. The reason for this is simple:
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a perfectly aligned PHE model can be obtained as an affine transform of a hard sphere model, and
a hard sphere model does not exhibit smectic phases. Hence, as nanofillers rarely are perfectly
uncapped cylinders, the theory is likely only accurate in the slender rod limit L/D →∞.

More sophisticated methods are necessary for finite aspect ratios if end caps are present, as it
has been found to have a noticeable influence on the wave vector Q and the critical density η∗.
This must arguably have a significant influence on the formation of a percolating network [81].
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Chapter 6

Continuum percolation in the smectic-A
phase

The smectic-A phase is a spatially inhomogeneous phase, hence we require connectedness perco-
lation theory in an inhomogeneous form. While not immediately obvious, this does significantly
complicate the possibility to derive analytical results. This is most evident from the Ornstein-
Zernike equation, as it is no longer possible to use the convolution theorem to reduce it to an
algebraic equation in Fourier space. The theoretical knowledge on spatial inhomogeneities in con-
tinuum percolation is limited. Some results exist using the Percus-Yevick closure, as it can be
solved analytically near a hard wall [82]. Furthermore, spatial inhomogeneities have been inves-
tigated by Chatterjee and Grimaldi [83] using a lattice mapping to study both the effect of local
volume fraction fluctuations of cylinders, and the effect of phase separation [83, 84].

Considerably more effort has been devoted to integral equation theory of inhomogeneous fluids
[85]. Since the equations in inhomogeneous percolation are similar to those for inhomogeneous
fluids, we can use methods specifically developed for inhomogeneous fluids and apply them to
percolation theory. While we are interested in an externally applied density distribution and
derive the resulting percolation properties, most of these models use a completely coupled set of
equations, in which both the pair correlation functions and the singlet-density are extracted from
the governing equations [85]. Numerically studying inhomogeneous fluids via integral equation
theories is known to be computationally demanding, since the solutions depend on the position of
all particles, not just relative distances. An efficient numerical approach was recently discussed
by Lado [86]. Since none of methods known to us are straightforwardly applied to our model, we
develop a novel and analytical method to describe percolation in a partially ordered phase. While
this method is developed specifically for the smectic-A phase, it is likely that it can be extended
to any (partially) ordered phase.

In this chapter, we appropriately reformulate connectedness percolation theory, such that we can
obtain analytical results in an inhomogeneous model. Secondly, we derive results for the parallel
cylinder model discussed in chapter 5.
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6.1 Clusters

We start from definition (2.8) of the mean cluster size in an inhomogeneous form

S = 1 +
1

N

∫ ∫
d~r1d~r2ρ

(1)(~r1)ρ(1)(~r2)P (~r1, ~r2). (6.1)

The translational invariance of P (~r1, ~r2) is partially conserved, since the density distribution ρ(1)(~r1)
is only dependent on the coordinate z along the nematic director and independent of the radial
component ~R1. Hence the radial component only depends on the distance between two particles,
while in the direction along the nematic director both positions have to be considered explicitly.
This translates to

P (~r1, ~r2) = P (|~R1 − ~R2|, z1, z2). (6.2)

Using this property, we can simply pre-integrate the radial component in Equation (6.1) to obtain

S = 1 + lim
qr→0

A

N

∫ ∞
−∞

ρ(1)(z2)dz2

[∫ ∞
−∞

ρ(1)(z1)P̂ (qr, z1, z2)dz1

]
, (6.3)

where we use the Fourier notation already employed in chapter 2. Next, we write the density
distribution function as ρ(1)(z) = ρψ(z), where ψ(z) is a non-normalised density distribution func-
tion, which we assume to be an even function of z for convenience. One integral in Equation (6.3)
can be limited to one full wavelength 2π

q
due to the periodicity of the smectic distribution function

ψ(z), so that

S = 1 + lim
qr→0

A

N

qLz
2π

ρ2

∫ π
q

−π
q

dz2

∫ ∞
−∞

ψ(z1)ψ(z2)P̂ (qr, z1, z2)dz1, (6.4)

where the integration boundaries of z2 must represent the symmetry of ψ(z2). Here, Lz is defined
such that ALz is the total volume V of the system. Therefore q

2π
Lz is the total number of smectic-A

wavelengths in the model. Next, noting that ρ = N
ALz

, we can simplify this expression to

S = 1 + lim
qr→0

ρ
q

2π

∫ π
q

−π
q

dz2

∫ ∞
−∞

ψ(z1)ψ(z2)P̂ (qr, z1, z2)dz1. (6.5)

We note that, under the symmetry constraints on the model,
∫ π
q

−π
q

dz2ψ(z2)P̂ (qr, z1, z2) must be an

even function of z1. This holds, as ψ(zi) is an even function and the integral over z2 is symmetric
around the origin, hence the change of z1 → −z1 must leave this integral invariant. We now define
an auxiliary function K̂(qr, z1) as

K̂(qr, z1) =
q

2π

∫ π
q

−π
q

ψ(z2)P̂ (qr, z1, z2)dz2, (6.6)

where
q

2π

∫ π
q

−π
q

ψ(z2)dz2 = 1. (6.7)
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This implies that K̂(qr, z1) can be seen as the pair connectedness function averaged over the
position z2 of one of the particles. A recently proposed solution strategy for percolation in the
nematic phase uses a similar strategy, by pre-averaging over the orientational distribution function
of one of the particles [62]. Combining Equation (6.4) with Equation (6.6), we obtain

S = 1 + lim
qr→0

ρ

∫ ∞
−∞

ψ(z1)K̂(qr, z1)dz1. (6.8)

This expression is valid for any liquid under the assumption that it is periodic in only one direc-
tion, while remaining liquid-like in all other directions. In chapter 5, we show that the density
distribution function ψ(z) for parallel aligned particles can be expressed as a harmonic expansion
as

ψ(z) = 1 +
∑
j

∆j cos(jqz), (6.9)

where ∆j is the amplitude and q is the associated wave vector. Note that the εj of the previous
section is now absorbed in ∆j. Inserting ψ(z) into Equation (6.8) and writing the cosine in complex
form gives

S = 1 + lim
qr→0

ρ

∫ ∞
−∞

K̂(qr, z1)dz1 + lim
qr→0

ρ

2

∑
j

∆j

∫ ∞
−∞

(
ei(jqz1) + e−i(jqz1)

)
K̂(qr, z1)dz1. (6.10)

This expression indicates that the mean cluster size S contains both a homogeneous term, given by
the second term on the right, and an inhomogeneous contribution, given by the third term on the
right. The inhomogeneous contribution is simply a Fourier transform of K̂(qr, z1) over z1, which
allows us to rewrite this expression in the compact form

S = 1 + lim
qr,qz→0

ρ ̂̂K(qr, qz) + lim
qr→0

ρ
∑
j

∆j
̂̂K(qr, jq). (6.11)

Here, ̂̂K denotes that the function K has been Fourier transformed twice. We have used the fact
that K̂(qr, z1) is an even function and therefore the Fourier Transform is invariant under the change
q → −q. This definition is consistent with the homogeneous mean cluster size, Equation (2.10),
by setting ∆j = 0 for all j, which gives

S = 1 + lim
qr,qz→0

ρ ̂̂K(qr, qz) = 1 + lim
qr,qz→0

ρ ̂̂P (qr, qz). (6.12)

The mean cluster size as defined by Equation (6.11) turns out to be convenient for percolation in
the inhomogeneous model, as it allows us to reduce the Connectedness Ornstein-Zernike equation
to an analytically solvable form, which we derive in the next section.

6.2 The Inhomogeneous Ornstein-Zernike Equation

Now that we have obtained a usable expression for the mean cluster size, we are in the position
to rewrite the Ornstein-Zernike Equation (2.12) in an appropriate form. We start with the known
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formulation of the connectedness Ornstein-Zernike Equation (2.12)

P (|~R1 − ~R2|, z1, z2) = C+(|~R1 − ~R2|, z1, z2)+ (6.13)∫
dz3

∫
d~R3ρ

(1)(z3)C+(|~R1 − ~R3|, z1, z3)P (|~R3 − ~R2|, z3, z2),

where ~Ri represents the radial position of particle i, and zi the position in the direction along the
nematic director. We can use the convolution theorem for the radial vector |~R1− ~R2| since ρ(1)(z3)
only depends on z3, so that

P̂ (qr, z1, z2) = Ĉ+(qr, z1, z2) +

∫ ∞
−∞

ρ(1)(z3)Ĉ+(qr, z1, z3)P̂ (qr, z3, z2)dz3. (6.14)

Next, we multiply both sides by q
2π
ψ(z2), integrate over z2 from −π

q
to π

q
and obtain

K̂(qr, z1) = D̂+(qr, z1) +

∫ ∞
−∞

ρ(1)(z3)Ĉ+(qr, z1, z3)K̂(qr, z3)dz3, (6.15)

where K̂(qr, z1) is defined via Equation (6.6) and D̂+(qr, z1) is defined as

D̂+(qr, z1) =
q

2π

∫ π
q

−π
q

ψ(z2)Ĉ+(qr, z1, z2)dz2. (6.16)

Equation (6.15) can only be solved analytically for a few special cases. Notably, we need to assume
that the direct connectedness function C+ remains isotropic in the z coordinates, i.e., it only
depends on the distance between two particles in the z direction Ĉ+(qr, z1, z2) = Ĉ+(qr, |z1 − z2|).
This essentially limits the use of closures to the second virial approximation only. This is, however,
not a severe limitation for our model, since the second virial approximation is usually accurate
for slender nanoparticles in three dimensions. Under this assumption, the remaining integral in
Equation (6.15) can be seen as a convolution integral of Ĉ+(qr, |z1 − z2|) with ρ(1)(z3)K̂(qr, z3).
Hence, we obtain

̂̂K(qr, qz) = ̂̂D+(qr, qz) + ρ ̂̂C+(qr, qz)
̂̂K(qr, qz)+ (6.17)

ρ ̂̂C+(qr, qz)
1

2

∑
j

∆j

( ̂̂K(qr, qz + jq) + ̂̂K(qr, qz − jq)
)
,

or

̂̂K(qr, qz) =
̂̂D+(qr, qz)

1− ρ ̂̂C+(qr, qz)
+

ρ ̂̂C+(qr, qz)

1− ρ ̂̂C+(qr, qz)

1

2

∑
j

∆j

( ̂̂K(qr, qz + jq) + ̂̂K(qr, qz − jq)
)
, (6.18)

where we inserted the definition of ρ(1)(z3). The form of Equation (6.18) is similar to that of the

isotropic Ornstein-Zernike equation with an additional term coupling ̂̂K(qr, qz) to contributions of
different wave vectors.
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The definition of the mean cluster size (6.11) indicates that we only need to evaluate Equa-
tion (6.17) for qz = nq for integer values of n. This means that the Ornstein-Zernike equation is
a hierarchical set of infinitely many equations in the wave vector qz, coupled by the last term in
Equation (6.17). To solve these equations, we need to truncate this hierarchy at a certain n = nmax,
which necessarily introduces some error. It can be expected, both from a physics perspective and
from the definition of the mean cluster size, that all relevant information is contained in the wave
vectors present in the density distribution (6.9). Hence, we choose nmax such that all terms present
in the density distribution function (6.9) are included. We have numerically checked this assump-
tion by setting nmax larger than the largest contribution in the bifurcation density. We find that
the assumption is valid, as it introduces a negligible error of the order of O(10−6 − 10−3%).

6.3 The model

In order to actually use Equation (6.11) and Equation (6.17) we first need to calculate ̂̂C+(qr, qz)

and ̂̂D+(qr, qz). Here, we employ the renormalised second virial approximation

C+(1, 2) = Γ(η)f+(1, 2), (6.19)

where Γ(η) is the Parsons-Lee correction term, and f+(1, 2) is the connectedness Mayer f -function

Both ̂̂C+(qr, qz) and ̂̂D+(qr, qz) are now completely determined by the connectedness criterion
imposed on the particles, and by the particle shape. Here, we use the cherry-pit model for uncapped
cylinders, as is schematically shown in Figure 6.1. This is a model in which particles possess a hard
core as well as a connectivity shell, which defines particle connections. The size of this connectivity
shell is λr in the radial direction and λz in the z-direction.

The direct connectedness function ̂̂C+(qr, qz) and the auxiliary function ̂̂D+(qr, qz) are derived
and calculated in Appendix C, and are given by

̂̂C+(qr, qz) = Γ(η)8v0j0(qzL)

[(
1 +

λr
D

)2 J1(qrD(1 + λr
D

))
1
2
qrD(1 + λr

D
)
− J1(qrD)

1
2
qrD

]

+ Γ(η)8v0

(
1 +

λr
D

)2 J1(qrD(1 + λr
D

))
1
2
qrD(1 + λr

D
)

[(
1 +

λz
L

)
j0

[
qzL

(
1 +

λz
L

)]
− j0(qzL)

]
,

(6.20)

where v0 is the volume of a single particle, j0 is the spherical bessel function of zeroth order, J1 is
the Bessel function of first order, L is the length of a particle, D is the diameter of a particle, λr
is the size of the connectedness shell in the radial direction and λz is the size of the connectedness
shell in the z direction. Taking the limit qr, qz → 0 gives

̂̂C+(0, 0) = 8v0Γ(η)

[(
1 +

λr
D

)2

− 1 +

(
1 +

λr
D

)2
λz
L

]
, (6.21)
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Figure 6.1: (a) Schematic image of the connectedness-shell criterion. Here, D is the diameter of the
cylinders and L the length. λr is the thickness of the connectedness shell in the radial direction and λz is
the thickness of the connectedness shell in the z direction. (b) If the connectivity shells of the cylinders
overlap, we define them to be connected.

which is equal to the volume in which two particles are connected. The auxiliary function ̂̂D+(qr, qz)
only needs to be evaluated for qz = nq, for which it reduces tô̂D+(qr, 0) = ̂̂C+(qr, 0) (6.22)̂̂D+(qr, nq) =

∆n

2
̂̂C+(qr, nq) for n ≥ 1. (6.23)

With these expressions, we have all ingredients to investigate the effect of the smectic-A phase
ordering on percolation.

6.4 Effects of a periodic density modulation

To investigate the effect of the onset of the smectic-A phase on percolation, we start with the
zeroth order density distribution function

ρ(1)(z) = ρ (1 + ∆1 cos(qz)) . (6.24)

In this section we keep ∆1 as an independent parameter, hence ignoring its dependence on the
volume fraction η. Using the results from the previous section allows us to write Equation (6.17)
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as

̂̂K(qr, 0) =
̂̂C+(qr, 0)

1− ρ ̂̂C+(qr, 0)
+ ∆1ρ

̂̂C+(qr, 0)

1− ρ ̂̂C+(qr, 0)

̂̂K(qr, q), (6.25)

̂̂K(qr, q) =
∆1

2

̂̂C+(qr, q)

1− ρ ̂̂C+(qr, q)
+

∆1ρ

2

̂̂C+(qr, q)

1− ρ ̂̂C+(qr, q)

( ̂̂K(qr, 0) + ̂̂K(qr, 2q)
)
, (6.26)

̂̂K(qr, nq) =
∆1ρ

2

̂̂C+(qr, n · q)
1− ρ ̂̂C+(qr, nq)

( ̂̂K(qr, 0(n− 1)q) + ̂̂K(qr, (n+ 1)q)
)
. (6.27)

We truncate the set of equations at n = 1, hence we set ̂̂K(qr, nq) = 0 for n > 1. The mean cluster
size S can now be obtained from Equation (6.11) as

S =
1 + (

∆2
1

2
− 1)ρ ̂̂C+(0, q))

(1− ρ ̂̂C+(0, 0))(1− ρ ̂̂C+(0, q))− 1
2
(∆1ρ)2 ̂̂C+(0, 0) ̂̂C+(0, q)

. (6.28)

For ∆1 = 0 this reduces to the nematic mean cluster size, which diverges at ρp = 1/ ̂̂C+(0, 0).
We observe in the denominator of this equation that the point of divergence shifts for ∆1 6= 0,
indicating that the smectic-A phase indeed influences the percolation threshold. The percolation
threshold for this case is given by

ρp =
̂̂C+(0, 0) + ̂̂C+(0, q)−

√
2∆2

1
̂̂C+(0, 0) ̂̂C+(0, q) + ̂̂C+(0, q)2 − 2 ̂̂C+(0, 0) ̂̂C+(0, q) + ̂̂C+(0, 0)2

2 ̂̂C+(0, 0) ̂̂C+(0, q)−∆2
1
̂̂C+(0, 0) ̂̂C+(0, q)

.

(6.29)
While this expression is not immediately insightful, the expansion close to the N-SmA phase
transition ∆1 � 1 is. It is given by

ρp =
1̂̂C+(0, 0)

(
1− ∆2

1

2

̂̂C+(0, q)̂̂C+(0, 0)− ̂̂C+(0, q)

)
+O(∆4

1), (6.30)

where only even orders in ∆1 are present due to symmetry. This expression is accurate only
close to the N-SmA phase transition, which is also true for the density distribution we imposed
Equation (6.24). Equation (6.30) shows that the onset of the smectic-A phase shifts the percolation
threshold in a continuous manner, and can be written as a perturbation on the percolation threshold

in the nematic phase. Since ̂̂C+(0, 0) > ̂̂C+(0, q) for all q 6= 0, the shift to higher or lower densities

is completely dependent on the sign of ̂̂C+(0, q). In the slender rod limit, where the connectivity
shell size λz/L→ 0, the influence of the smectic-A phase is fully captured within the wave vector
Q as ̂̂C+(0, q)̂̂C+(0, 0)− ̂̂C+(0, q)

=
sinQ

Q− sinQ
, (6.31)
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where Q = qL. This constant is approximately −0.178 for the critical density modulation Q∗

which indicates that the smectic-A phase transition inhibits percolation in the slender rod limit.
We note that this dependence on Q only holds for all orders in ∆1 in Equation (6.30). Whether
it is possible that the onset of the smectic-A phase destroys a percolating cluster that was present
in the nematic phase is now fully dependent on the density dependence of ∆1, which we discuss in
a later point in this report, in section 6.5.

For finite aspect ratios, we expect Equation (6.29) to be dependent on both shell sizes λr/D and

λz/L and the wave vector Q. In Figure 6.2 we plot ̂̂C+(0, q)/( ̂̂C+(0, 0) − ̂̂C+(0, q)) as a function
of both connectivity shell sizes, indicating the shift in the percolation threshold. Here, we observe
that the connectivity shell size λz/L has a large influence on the shift of the percolation threshold,
whereas the effect of λr/D is limited. Only for λr/D � 1, the influence is non-negligible. The
oscillatory behaviour as function of λz indicates that percolation-inhibiting or -facilitating effects
can be tuned by tuning λz/L. This effect is quite intuitive, and relies solely on the average number
of particles a test particle at position ~r1 is directly connected to. For a homogeneous density model,
a test particle at position ~r1 can be connected with a particle at position ~r2 in its connectivity
shell, and the weight of this connection is proportional to the density. In the smectic-A phase
this weight associated with the connection is still proportional to the density, but the density is
now a local, not a global, property. If the average density in the connectivity shell is higher than
the average density in a nematic reference fluid at the same global density, we expect that the
formation of a percolation network is more likely. The reverse is identically true. That this holds
is best observed in the ideal particle limit (i.e., for λr/D → ∞). Here, this average connectivity
argument translates to the condition that the total particle size L+ λz is equal to the wavelength
for the effect of the density modulation to be completely compensated. The periodicity of the
smectic-A layers is given by 2π

q
≈ 1.39L for uncapped cylinders1. Therefore it is expected that

the percolation threshold is shifted to lower densities for λz
L
> 0.39, as compared to the a nematic

reference fluid. This transitions between percolation-inhibiting and -facilitating effects can be
extracted from the condition ̂̂C+(0, q)̂̂C+(0, 0)− ̂̂C+(0, q)

= 0. (6.32)

The first of these transition lines is given by

λz
L

=
2π

Q
− 1 +

1

Q
arcsin

[
sin(Q)

(1 + λr
D

)2

]
, (6.33)

where Q is the smectic-A wave vector. The asymptote λr
D
→ ∞ is given by λz

L
= 2π

Q
− 1, or

λz + L = 2π
Q
L. This is in agreement with our expectation that the average connectivity is the key

control parameter for the smectic-A phase. For non-negligible hard core diameter of the particles,
the transition occurs at smaller shell size λz/L. Apparently, the presence of the hard core increases
the effect that λz/L has on the percolation threshold.

1For capped cylinders, the periodicity obtained by Monte Carlo simulations is 2π
q ≈ 1.23L for L/D = 5, and

limits to 2π
q ≈ 1.27L in the infinite aspect ratio limit [81].
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If we increase λz/L beyond the first maximum in Figure 6.2, a competition is entered where the
larger connectivity shell is compensated by the presence of low-density regions or enhanced by
high-density regions. Apparently, the additional connection with a low-density region can largely
counteract the effect of high-density region, which is in agreement with the average connectivity
argument. Here, we observe regions where the smectic-A phase shifts the critical density to higher
densities, effectively blocking percolation. These connectivity sizes, however, are largely unphysical
as, for example, the distance between carbon nanotubes to facilitate electron hopping is much
smaller than the linear size L of the particles. Therefore only effects associated with λz/L � 1
are physically relevant.

Figure 6.2: Orange: A plot of C∆ = Ĉ+(0, q)/(Ĉ+(0, 0) − Ĉ+(0, q)) as a function of the connectedness
shell sizes λr/D and λz/L. Blue: surface indicating C∆ = 0. For C∆ < 0, the percolation threshold shifts
to higher densities, whereas for C∆ > 0 the percolation threshold shifts to lower densities. The black
curve corresponds to the minimum values of λz/L and λr/D to have percolation at the critical density of
the smectic-A phase transition ηc ≈ 0.338.

6.5 Percolation in the smectic-A phase

In the previous section, we have investigated the effects of the onset of the smectic-A phase by
inspecting the ∆1 � 1 limit. We have used ∆1 as a free parameter for simplicity, but it is, in
fact, a function of the volume fraction η. In this section we investigate the effect of including
the density dependency on ∆1 on percolation in the smectic-A phase. The density dependency of
∆1 is introduced at the level of the second order bifurcation, and is therefore not exact. A more
accurate description can be obtained by developing the bifurcation analysis of chapter 5 to higher
orders. To investigate the effects of the onset of the smectic-A phase, we investigate the minimum
connectivity-shell thickness in both directions, λr/D and λz/L, that enables percolation.
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Percolation threshold

In Figure 6.3a, we plot the percolation threshold in terms of the minimum required λz/L as a
function of λr/D for η = 0.34, for both the smectic-A phase and the nematic reference fluid. The
N-SmA phase transition occurs at η = 0.338 for our model. As predicted in the previous section, we
observe both percolation-inhibiting and percolation-facilitating effects. For small values of λz/L,
the smectic-A phase makes the formation of a percolation network slightly more difficult, whereas
for larger sizes of this shell, it makes the formation of a percolating network slightly easier. In
Figure 6.3b we plot a similar diagram, only at a higher volume fraction η = 0.365, where ∆1 ≈ 1.
Here, we observe the same qualitative behaviour as in the lower density case, though the effect
is more pronounced. Even though the effect of the smectic ordering is noticeable, it is relatively
small compared with the effect of the isotropic-nematic phase transition [62].
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Figure 6.3: The minimum required connectivity shell for percolation in the smectic-A phase and a perfectly
aligned nematic phase. No percolation is present below the curves, while a percolating particle cluster is
present above the curves.

While this indicates that in the smectic-A phase the connectivity shell λz can be used to switch
between percolation-inhibiting and percolation-facilitating effects, the large difference in shell sizes
necessary to switch between these effects are unphysical. Under the assumption that λz ≈ λr, the
aspect ratio L/D of the particles becomes important. The actual size of λz and λr is dependent on
the electron tunnelling length, or the Debye-length in charge-stabilised suspensions [87]. We have
found no literature that discusses whether λz and λr are different, but it is reasonable to assume
that these length scales are of the same order of magnitude. As we have shown in Figure 6.3, the
smectic-A phase only facilitates percolation if λz/L � λr/D. Hence for L/D > 1 we expect, a
priori, that the effect of the smectic ordering is limited to inhibiting the formation of a percolating
network. In Figure 6.4, we plot the percolation threshold in terms of the connectivity shell λ/D,
where λr = λz = λ, as a function of the volume fraction η of the nanoparticles for various aspect
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ratios L/D for the smectic-A phase and the nematic reference fluid. Indeed we find that for all
plotted aspect ratios the minimum shell size is larger in the smectic-A phase, as compared to the
nematic phase. Still, it remains a monotonically decreasing function for η ≥ ηc. The connectivity
shell λ/D is continuous at the N-SmA phase transition, indicating that the smectic ordering does
not destroy a percolating network that is already formed in the nematic phase. It is likely, however,
that the cluster structure in the smectic-A phase significantly deviates from that in the nematic
phase, which we investigate in the next section.
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Figure 6.4: The percolation threshold in terms of the minimum required shell size λ/D for various values
of the aspect ratio L/D. We include data for the smectic-A phase, and a nematic reference fluid.

Correlation length

The physical dimensions of the cluster can be probed via the correlation lengths ζr, perpendicular
to the nematic director, and ζz, parallel to the nematic director. If the density modulation is
sharply peaked in the smectic-A phase, it might be possible that an infinitely large cluster has
formed in the radial direction, while it remains finite in the other direction. The mean cluster
size S is too crude of a measure to extract information on the physical cluster dimension, as any
cluster consisting of an infinitely many particles (in any direction) causes the mean cluster size S to
diverge. The correlation length within the smectic layers ζr and the correlation length scale along
the nematic director ζz, however, might contain this information. It is possible that the cluster
grows differently perpendicular or parallel to the nematic director, i.e., the critical exponents of
the correlation length ν⊥ and ν‖ are different. We do note that a discrete layered model has
been investigated by Dayan et al. [88], who found that ν⊥ and ν‖ are different only for a random
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multilayer model, where each layer had a random site density. The correlation lengths can be
extracted from the ~q-dependent mean cluster size S(qr, qz) in the small ~q limit, by writing it in a
Lorentzian form as

S(qr, qz) =
S

1 + ζ2
r q

2
r + ζ2

z q
2
z

, (6.34)

where ζr is the correlation length in the radial direction and ζz is the correlation length in the
direction parallel to the rods [62].

Unfortunately, the method outlined in this report does not allow for the possibility to extract the
parallel correlation length ζz. In our derivation of the inhomogeneous mean cluster size S, we have
pre-averaged the position over a single particle z1, while keeping the other particle fixed at z2. In
order to calculate the correlation length ζz, information about z = |z1− z2| is necessary. Therefore
we only discuss the correlation length scale perpendicular to the nematic director ζr, as it can be
obtained straightforwardly. The radial correlation length ζr is averaged over one smectic-A layer,
and can for the zeroth order density distribution be obtained analytically as(

ζr
D

)2

= f(η, λr, λz)S, (6.35)

where f(η, λr, λz) is a complicated function dependent on η, λr and λz, see Appendix C. This
function itself diverges if[

1− 4
(
∆2

1 − 2
)
ηΓ(η)

(
j0(Q)− (λr + 1)2(λz + 1)j0((λz + 1)Q)

)]2
= 0. (6.36)

The divergence only occurs at a volume fraction above the percolation threshold, hence the cluster
size diverges at the percolation threshold according to ζr ∼

√
S with the critical exponent of

ν⊥ = 1
2
.

We have plotted the correlation length ζr/D in Figure 6.5 for two parameter choices of λr and λz,
to illustrate the change in growth caused by the nematic-smectic phase transition. The blue line
indicates the correlation length for a nematic reference fluid. The growth of the correlation length
does change suddenly at the nematic-smectic transition, but diverges similarly to the nematic
correlation length. Hence, aside from the shift in the percolation threshold, the smectic-A phase
does not functionally change the lateral growth of the cluster as measured by ζr.

Second order density distribution

While we have used the simple zeroth-order density distribution up to this point, we have ignored
two key-aspects that can have a significant effect on the percolation threshold. First of all, we
have neglected the change of the smectic wave vector Q as a function of the density. Secondly,
the peaks in the density distribution become sharper with increasing density, which influences
the average number of particles that a random test particle is connected to. We investigate the
effects of these simplifications in this section. While the mean cluster size S can still be obtained
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Figure 6.5: The radial correlation length scale ζr as a function of the volume fraction η for two different
choices of connectivity shell sizes. Blue: nematic reference fluid. Orange: the correlation length for a
nematic fluid for η < ηc and a smectic fluid for η > ηc. At the N-SmA phase transition, the correlation
length, and therefore the lateral dimension, changes continuously.

analytically, it becomes intractable for a second and higher order density expansion. Hence, we
have used Mathematica to solve for the mean cluster size S. It is reasonable to expect that the
first order term ∆2 is non-negligible for ∆1 → 1, as it is only one order of magnitude smaller than
the zeroth order term. The second order term is two orders of magnitude smaller than the zeroth
order term and is therefore likely negligible.

As shown in Figure 6.6, however, the effect of including higher order terms in the density distri-
bution function ρ(1)(z1) is negligible. Here we have included the nematic reference fluid, as well as
the zeroth, first and second order smectic density distribution. Minor differences emerge only for
η ≈ 0.365 as shown in Figure 6.6a. In Figure 6.6b, we zoom in on a specific part of this diagram.
The first and second order density distribution curves are indistinguishable, while the zeroth order
density expansion only predicts a slightly higher percolation threshold. The crossing point with
the nematic reference fluid is slightly shifted due to the shift in the wave vector Q. Hence the
effect of the smectic-A ordering on percolation is, at least close to the phase transition, almost
completely captured within the zeroth order density distribution and only weakly dependent on
the exact shape of the distribution.

We plot the percolation threshold in form of the required connectedness shell size under the as-
sumption that λr = λz = λ in Figure 6.7. Here, the nematic reference fluid, the zeroth order
density distribution and the second order density distribution curves are included for L/D = 100.
Indeed, we find that the zeroth order density distribution accurately describes the effect of the
smectic-A phase over the whole plot range, and higher order contributions emerge only for ∆1 → 1.
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Figure 6.6: (a) The percolation threshold in terms of the minimum connectivity shell for η = 0.365. Here,
we include a nematic reference fluid and the smectic-A fluid, using the zeroth, first and second order
density distributions. (b) Same as (a), zoomed in to illustrate the difference between the zeroth order
and first or second order density distribution functions.

6.6 Deeper in the smectic-A phase

Up to now we have only considered the effect of smectic-A ordering near the phase transition where
the bifurcation expansion for ρ(1)(z) is valid. Although the main effect of the smectic-A phase is
captured, a significant non-zero density is present everywhere. Deeper in the smectic-A phase this
is no longer true, and the high density regions are alternated by regions with near zero density
[80, 81]. These regions of zero or near zero density can, in fact, have a significant influence on
the percolation properties. If the contact between two high density regions is nearly impossible,
cluster formation can essentially become an in-layer phenomena only. If this layer is small enough,
the in-layer cluster formation behaves as in a quasi-two-dimensional model.

To inspect the effect of sharply peaked layers with zero or near-zero density between the layers,
we employ a delta-wave density distribution function ρ(1)(z) = ρψ(z), where ψ(z) is given by

ψ(z) =
n∑
l=1

αδ(z − lα). (6.37)

Here α is the inter-layer spacing, or lattice constant, which is equivalent to α = 2π
q

, as shown in
Figure 6.8. This density distribution function effectively transforms our model into combined a
lattice-continuum model. Here, it is a continuum percolation model in two-dimensional planes,
which are connected to other planes in a lattice-like fashion. Hence, it is convenient to fully
rewrite the mean cluster size S and the Ornstein-Zernike equation in lattice-continuum form, see
Appendix G for details. We employ the second virial approximation, equivalent to the approxi-
mation we have employed in the previous parts of this chapter. Under appropriate conditions we
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Figure 6.7: The effect of higher order terms in the density modulation of the smectic-A phase transition
for the aspect ratio L/D = 100. We observe only a small difference for η near the volume fraction where
the bifurcation analysis breaks down.

can obtain the mean cluster size S in the thermodynamic limit as

S =
1

1− ρα
(
Ĉ+(0, 0) + 2Ĉ+(0, α)

) , (6.38)

where we note that due to the lattice-like structure in the z direction, the direct connectedness
function Ĉ+(0, α) is only Fourier transformed in one direction. The z direction depends on the

lattice spacing only, hence Ĉ+(0, 0) represents the direct connectedness function within a layer,

whereas Ĉ+(0, α) represents the direct connectedness function between layers. For hard cylinders
the dependence of these functions on α is limited to an discontinuous ‘on/off’-switch of the con-
nections between layers. For a model with capped spherocylinders this on/off-switch is continuous.
In absence of inter-layer connections, the mean cluster size is simply the two-dimensional mean
cluster size S. In this case, we obtain percolation inside each layer, while no percolating cluster
is present between layers. For the uncapped cylinder model, the change in the inter-layer spacing
results in a discontinuous change in the mean cluster size, where we can instantaneously transition
from no percolation to percolation. This means that if connections between neighbouring planes
are present, Ĉ+(0, α) is a constant, independent of α. For capped cylinders, this is not the case,
as the end caps overlap first, causing this transition to be continuous. Similarly to the fully con-
tinuous model described in the previous sections, we are unable to extract the correlation length
parallel to the nematic director.

67



α

Figure 6.8: Schematic view of the delta-wave density distribution model. The centres of mass of the
particles are positioned perfectly within the planes. The distance between the planes is predefined as α.

One interesting possibility of the delta-wave approach is that it enables us to inspect the effect
of a finite number of connected planes. Moreover, a simple closed-form expression for the mean
cluster size S, as a function of the total number of included planes k, can be obtained [89]. This
finite-layer mean cluster size is given by

S =
1

1− ρα
(
Ĉ+(0, 0) + 2 cos

(
1

k+1
· π
)
Ĉ+(0, 1)

) , (6.39)

where k ≥ 2 is the number of planes in the model. Indeed, the infinite layer mean cluster size
Equation (6.38) is obtained in the limit k → ∞. Equation (6.39) predicts that the percolation
threshold ρp is dependent on all layers via

ρpα =
1

Ĉ+(0, 0) + 2 cos
(

1
k+1
· π
)
Ĉ+(0, 1)

. (6.40)

This does actually suggest that the infinite cluster that appears at the percolation threshold, is also
infinite in size in the z-direction. If the cluster remained finite in the z direction at the percolation
threshold, we should be able to obtain an infinite cluster in the centre of the model, which should
remain unaffected by minor changes at the z-boundaries. The fact that this is not the case suggests
that the cluster must become infinitely large in all directions.
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Chapter 7

Conclusion

In the first part of this thesis, we have investigated the Percus-Yevick closure for connectedness
percolation theory in two dimensions. We have applied the Percus-Yevick closure in two dimensions
both for ideal and cherry-pit disk particles, as well as for ideal anisometric particles. While
analytical results can be obtained in odd dimensions, this is not true for even dimensions. Hence
we have used a direct numerical evaluation of the governing equations to obtain a solution for the
Percus-Yevick closure. We found that the Percus-Yevick closure for connectedness percolation is
accurate for low densities, but inaccurate at high densities for all particle models. The Percus-
Yevick closure does not predict a percolation threshold within the density range that we have
investigated. For the cherry-pit model for disks, we have found that the Percus-Yevick closure
appears to become inconsistent at lower densities than the percolation threshold.

The apparent breakdown of the Percus-Yevick closure in two dimensions, where the pair connect-
edness function becomes locally negative, has, to our knowledge, not been reported before. This
breakdown of Percus-Yevick theory for cherry-pit disks is a second indicator that Percus-Yevick
cannot be used to obtain meaningful results for percolation at high densities in two dimensions. For
anisometric ideal particles in two dimensions, we find a similar exponential scaling behaviour in the
mean cluster size as for ideal disk particles. We have compared our pair connectedness functions
with those available from Monte Carlo simulations and find remarkable quantitative agreement at
low densities, while at high densities the agreement is only qualitative. Similarly, excellent agree-
ment is found for the angular dependent pair connectedness function at low densities. We have
shown that an effective density rescaling is accurate. An extrapolation of this scaling indicates
that the equations need to be solved up to infinite density to get arbitrarily close to the percolation
threshold, which limits the practical usability of this method. Hence, the Percus-Yevick closure
is not well-suited to describe percolation in two dimensions, and the second virial approximation
turns out to be more accurate.

In the second part of this thesis, we have investigated the effect of the smectic-A ordering of
perfectly aligned nanoparticles on percolation in three dimensions. We have derived the density
distribution function via density functional theory using a bifurcation analysis, and derived an
method to calculate its effect on percolation. We have used a renormalised second virial closure
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to compensate for both the effect of finite aspect ratios and the perfect alignment of the particles.
The two important control parameters are the connectivity shell size along the nematic director
and the wavelength of the smectic-A phase. We have indicated that, within the region in which
the bifurcation analysis is accurate, the zeroth order bifurcation expansion completely captures
the effect of the smectic-A phase on percolation. While we have been able to obtain the correlation
length in the in-layer direction, our method fails to predict the correlation length in the direction
along the nematic director. It remains an open question what the physical dimensions of a cluster
in the smectic phase are.

At higher densities the smectic density distribution becomes sharply peaked, and a bifurcation
analysis does no longer suffice. We have investigated this limit by assuming perfectly localised
layers. The percolation threshold is then governed by the connections inside each layer and to
neighbouring layers. We have indicated that the percolation threshold for a finite number of layers
depends on the total number of layers in the model, suggesting that the correlation length at the
percolation threshold in the thermodynamic limit is the same within and perpendicular to the
layers. In general, we can conclude that close to the smectic-A phase transition, ordering of the
smectic-A phase inhibits the formation of a percolating cluster, but does not destroy an already
present cluster.

70



Chapter 8

Outlook

The Percus-Yevick closure is not well suited to describe percolation in two dimensions. More
closures exists with various degrees of complexity. In section 4.5, we have already briefly introduced
two possible routes to improve upon the Percus-Yevick closure. In the future, we believe that the
PY-d closure is likely the easiest to implement numerically, at least for ideal disk particles.

On the topic of the smectic-A phase, significant work is still necessary. Since we were unable to ob-
tain an expression for the correlation length along the nematic director, we are not able to inspect
the change in cluster dimensions in the direction along the director. In the future, methods put
forward in Jaiswal et al. [90] might be of use to solve this deficiency of our method. Furthermore,
we have limited our investigation of the effects of the smectic-A ordering on percolation close to
the phase transition and very deep in the smectic phase (with the delta-wave model) only. As
the positional ordering increases significantly deeper in the smectic-A phase, it is to be expected
that the influence of the wave vector and the connectivity shell in the direction along the nematic
director increase. Lastly, we have limited our investigation to a relatively simple model of perfectly
aligned cylinders. This can be extended to a more realistic description of the smectic-A phase,
which also includes effects as orientational freedom, end-caps and the presence of inter-layer parti-
cles. We note that the description of the smectic-A phase is found to be quite sensitive to coupling
between orientational and positional degrees of freedom. The sensitivity of the onset of percolation
in the smectic-A phase on the wave vector Q, indicates that especially the dependence of Q on the
end caps can have significant implications for the conclusions, especially at small aspect ratios.
Secondly, it has been predicted that the columnar phase pre-empts the smectic-A phase in certain
slender nanoparticles [64]. Hence our method could be extended to investigate this phase as well.

Finally, our theoretical method also provides the possibility to study finite size systems by using
a density modulation that behaves as a block-wave, i.e., a density modulation representing peri-
odically spaced layers of finite thickness, where the spacing (and density) between the layers is
appropriately chosen to prevent interactions between separate layers. This might especially be
useful for the investigation of thin films, as standard methods for connectedness percolation seem
to be inaccurate in two dimensions. Whether it is actually feasible to study these finite size models
with our newly proposed method remains to be seen.
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P. González, C. D. Keating, and K. A. Fichthorn. Assembly of Gold Nanowires by Sedimen-
tation from Suspension: Experiments and Simulation. The Journal of Physical Chemistry C,
114(16):7346–7355, 2010. doi:10.1021/jp909251v.

[69] B. D. Smith, K. A. Fichthorn, D. J. Kirby, L. M. Quimby, D. A. Triplett, P. González,
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Appendix A

Wiener-Hopf Factorisation

In this Appendix we discuss the solution strategy for the Percus-Yevick integral equation and how
it can be solved via the so-called Wiener-Hopf factorisation. We discuss only the necessary parts
of the theory of Wiener-Hopf factorisations, and refer any interested reader to the extensive book
by Noble [91]. To avoid cumbersome notation, we discuss the mathematical aspects of Fourier
transforms in three dimensions only, but note that it can be generalised to any odd dimension [37].

We start by considering the connectedness Ornstein-Zernike equation in Fourier space, which can
be conveniently written as

[1− ρĈ+(q)][1 + ρP̂ (q)] = 1, (A.1)

where ρ is the number density, Ĉ+(q) is the Fourier transform of direct connectedness function

C+(r) and P̂ (q) is the Fourier transform of pair connectedness function P (r). We can rewrite
Equation (A.1) as

1 + ρP̂ (q) = Â(q)−1 (A.2)

where we define
Â(q) = 1− ρĈ+(q), (A.3)

The choice of writing Â(q) as function of C+ appears arbitrary, but is not. Since C+ is short-
ranged in the Percus-Yevick closure, the Fourier transform in Equation (A.3) can be truncated at
the particle diameter d. This enables us to rewrite Equation (A.3) as

Â(q) = 1− 4πρ

∫ d

0

cos(qr)S(r)dr, (A.4)

where

S(r) =

∫ d

r

tC+(t)dt. (A.5)

If we assume that P̂ (q) is finite for any q, which holds below the percolation threshold, Â(q) has
no zeroes on the real q-axis [34]. In order to derive the functional factorised form, we need to

inspect the behaviour of Â(q) in the complex q-plane. Therefore we set q = x + iy in the rest of
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Figure A.1: A schematic view of the contour for the contour integration over log Â(q). The x-axis
corresponds to the real axis, whereas the y-axis corresponds to the imaginary axis.

this Appendix. Since Â(q), as given in Equation (A.4), is a Fourier transform over a finite interval,
it is regular throughout the complex plane, i.e., it is differentiable at every point in the complex
plane. In Equation (A.1), we observe that Â(q) goes uniformly to zero as |x| → ∞ in any strip

y0 ≤ y ≤ y1. Hence, a strip must exists where |y| ≤ ε about the real axis within which Â(q) has
no zeros. Next, we will make use of Cauchy’s integral formula

f(α) =
1

2πi

∮
dz

f(z)

α− z
, (A.6)

where α and z are coordinates in the complex plane. We integrate around log Â(q) with a contour
as shown in Figure A.1, where C1 is the contour from −∞ + iε to ∞ + iε, and C3 is the contour
from −∞− iε to ∞− iε. Since log Â(q) → 0 for |x| → ∞, the contours C2 and C4 have no net
contribution. Hence, we can write

log Â(q) = log Q̂(q) + log L̂(q), (A.7)

where

log Q̂(q) =
1

2πi

∫ −iε+∞
−iε−∞

dq′
log Â(q)

q′ − q
(A.8)

log L̂(q) = − 1

2πi

∫ iε+∞

iε−∞
dq′

log Â(q)

q′ − q
. (A.9)

From Equation (A.4) we know that Â(q) is an even function and therefore, by negating q′ in
Equation (A.9) we obtain

log L̂(q) = log Q̂(−q). (A.10)

Next, we can show that log Q̂(q) is an analytical regular function by writing

log Q̂(x+ iy) =
1

2πi

∫ ∞
−∞

dt
log Â(t− iε)

(t− x) + i(ε− y)
, (A.11)

which satisfies the conditions of an regular function in the domain y > −ε. Hence, it follows that
for |y| < ε we obtain

Â(q) = Q̂(q)Q̂(−q), (A.12)
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where Q̂(q) is also regular and has no zeros in the domain y > −ε [91]. Equation (A.12) is the

Wiener-Hopf factorisation of Â(q).

We continue by inspecting the behaviour of Q(q) to derive some useful properties. By inspecting

Equation (A.8) we note that when |x| → ∞ within the strip |y| < ε, it follows that log Q̂(q) ∼ x−1

and hence Q̂(q) ∼ 1−O(x−1). The function 1− Q̂(q) is therefore Fourier-integrable along the real
axis, and a function Q(r) can be defined as

2πρQ(r) =
1

2π

∫ ∞
−∞

exp(−iqr)
[
1− Q̂(q)

]
dq. (A.13)

By inspecting Equation (A.8), we observe that if q is real, the complex conjugate of Q̂(q) is

Q̂(−q), i.e., Q̂(q) is Hermitian. Hence, Q(r) must be a real function. Next, we can calculate
Equation (A.13) for r < 0. We do this by using a contour integral and Jordan’s lemma. Let us
define the following function

f(z) = eiazg(z), (A.14)

where a is a positive parameter and z is defined on a semicircular contour R in the upper half-plane
z ∈ {Reiθ|θ ∈ 0, π|}. Jordan’s Lemma then states that the upper bound for this contour integral
is given by ∣∣∣∣∫ f(z)dz

∣∣∣∣ ≤ π

a
MR, (A.15)

where MR is the maximum value for |g(Reiθ)|. Hence, if MR → 0, the contour integral along R is
zero.

For r < 0 we can close the contour for Equation (A.13) around the upper half-plane, where Q̂(q)
is regular. This shows that

Q(r) = 0 for r < 0. (A.16)

We also wish to close Q(r) for r > d. The analytic continuation of Q̂(q) into the lower half-plane
is given by

Q(q) = A(q)/Q(−q). (A.17)

By Equation (A.9) we know that Q̂(−q) → 1 for y → −∞. Hence, by the previous equation and

by Equation (A.4), we know that for large and negative y, Â(q) and Q̂(q) grow as exp iqd. This
allows us to close Equation (A.13) around the lower half plane for r > d, giving

Q(r) = 0 for r > d. (A.18)

With these bounds on Q(r), we can simply invert Equation (A.13) to obtain

Q̂(q) = 1− 2πρ

∫ d

0

dreiqrQ(r). (A.19)
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This expression for Q̂(q) can be used to simplify the connectedness Ornstein-Zernike Equation.

Combining Equations (A.4), (A.12) and (A.19) gives(
1− 2πρ

∫ d

0

dreiqrQ(r)

)(
1− 2πρ

∫ d

0

dre−iqrQ(r)

)
= 1− 4πρ

∫ d

0

cos(qr)S(r)dr. (A.20)

Multiplying both sides by e−iqr
′

and integrating over q from −∞ to ∞ gives

S(r) = Q(r)− 2πρ

∫ d

r

dtQ(t)Q(t− r) 0 < r < d, (A.21)

which, upon taking the derivative with respect to r, gives

rC+(r) = −Q′(r)− 2πρ

∫ d

r

dtQ′(t)Q(t− r) 0 < r < d. (A.22)

Using the same technique for P (r) we obtain

rP (r) = −Q′(r) + 2πρ

∫ d

0

dt(r − t)P (|r − t|)Q(t) r > 0. (A.23)

The equations (A.22) and (A.23) are the connectedness Ornstein-Zernike equation in factorised

form. In this derivation we have assumed two things, namely that P̂ (q) is finite for all q on the
real axis, and that C+(r) is of finite range. This does mean that any closure that has C+(r) to
be of finite range in r can be written in an equivalent finite form. This simplifies the solution
of the connectedness Ornstein-Zernike equation significantly as we do no longer need to solve the
connectedness Ornstein-Zernike equation over an infinite range, but only require knowledge of the
function over a small range.
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Appendix B

The Percus-Yevick equation for disks

In Appendix A, we derived the Wiener-Hopf factorisation for the three dimensional case, and it
can be extended to any odd dimension D. For even dimensions, however, this is not the case. In
this Appendix we show why even dimensions are troublesome by using the example of D = 2 case.
We indicate one possible method to circumvent this problem at the end of this Appendix, and
also show that solving the equations after factorisation still requires knowledge of a function over
infinite space.

We start again from the Ornstein-Zernike equation given by

[1− ρĈ+(q)][1 + ρP̂ (q)] = 1, (B.1)

where ρ is the number density, Ĉ+(q) is the Fourier transform of direct connectedness function

C+(r) and P̂ (q) is the Fourier transform of the pair connectedness function P (r). We can then

rewrite Equation (B.1) where we similarly define Â(q) as

Â(q) = 1− ρĈ+(q), (B.2)

where Â(q) is still given by

Â(q) = Q̂(q)Q̂(−q). (B.3)

As shown in Appendix A, we can write

Q̂(q) = 1− ρ
∫ d

0

Q(r)eiqrdr. (B.4)

The Fourier transform of C+(r) is now given by

Ĉ+(q) = 2π

∫ d

0

rJ0(qr)C+(r)dr, (B.5)

where J0 is the zeroth order Bessel function. This transform is related to a zeroth order Hankel
transform. The inverse Fourier transform is given by

C+(r) = 2π

∫ ∞
0

qJ0(qr)Ĉ+(q)dq. (B.6)
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Inserting Â(q) and C+(r) in the Ornstein-Zernike Equation (B.1) gives(
1− ρ

∫ d

0

Q(r)eiqrdr

)(
1− ρ

∫ d

0

Q(r)eiqrdr

)
= 1− 2πρ

∫ d

0

rJ0(qr)C+(r)dr. (B.7)

Following through with the same procedure by multiplying both sides with exp(−iqt) and inte-
grating over q from −∞ to ∞, we obtain

2π

∫ d

r

2t√
r2 − t2

C+(t)dt = 2Q(r)− 2ρ

∫ d

r

Q(t)Q(t− r)dt. (B.8)

This integral is of similar form as Equation (A.21) of Appendix A, which in odd dimensions we
consequently simplified by differentiating it with respect to r. While we could naively attempt the
same strategy in two dimensions, we immediately notice that this cannot be used to simplify the
term on the left hand side. Moreover, the term on the left hand side diverges if we attempt this.
Hence this is the end station of this strategy.

A method that can be used to factorise the Ornstein-Zernike equations has recently been derived
by Adda-Bedia et al. [35]. We provide an outline only, and refer for the full derivation to the

references [35, 36]. Equation (B.6) can be used to show that Ĉ+(q) can be written as

Ĉ+(q) =
1

q

∫ 1

0

φ(t) sin(qt)dt, (B.9)

where φ(t) is a real function [35]. Then, using Equation (B.6), C+(r) is written as

C+(r) =

∫ 1

r

φ(t)√
t2 − r2

dt

2π
, (B.10)

where appropriate conditions on φ(t) are necessary, as C+(r) does not diverge if we approach r = 1
from below. In this particular case, it is useful to use the normal Wiener-Hopf factorisation. This
allows us to link φ(t) to Q(r) via

φ(t) = −2Q′(t) + 2ρ

∫ 1

t

Q′(s)Q(s− t)ds, 0 ≤ t ≤ 1, (B.11)

with boundary condition Q(1) = 0. Hence, if Q(t) is known, it allows us to determine φ(t) and

C+(r). Since P̂ (q) = P̂ (−q) we may write without loss of generality

qP̂ (q) =

∫ ∞
0

ψ(t) sin qtdt, (B.12)

where ψ(t) is a real function and P (r) is given in terms of ψ(t) by

P (r) =

∫ ∞
r

ψ(t)√
t2 − r2

dt

2π
. (B.13)
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After some algebra, this can be written as

ψ(t) =
−4t√
1− t2

[∫ ∞
1

√
s2 − 1

s2 − t2
ψ(s)

ds

2π
− 1

]
. (B.14)

This equation fixes ψ(t) for 0 < t < 1 as a function of t > 1. Next, we can link ψ(t) and Q(t) as

2Q′(t) + ψ(t) = ρ

∫ t

0

Q(s)ψ(t− s)ds− ρ
∫ 1

t

Q(s)ψ(s− t)ds, (B.15)

which is valid for 0 < t < 1 and

ψ(t) = ρ

∫ 1

0

Q(s)ψ(t− s)ds, (B.16)

for t > 1. While this factorisation limits φ(t) and Q(t) over the interaction range of the particles
only, this is not true for ψ(t). ψ(t) for t < 1 is dependent on t > 1, so that it cannot be used to
obtain analytical solutions for the mean cluster size S or other quantities. While the numerical
solution proposed by Adda-Bedia et al. [35] is simple and does not have the troublesome divergence
that is present at q → 0 in the normal Ornstein-Zernike equation, it is only slowly convergent.
Since we expect the mean cluster size S to diverge for η > 1 for ideal particles, and the solution
method proposed by Adda-Bedia et al. [35] is an order-by-order solution in the density ρ, it can
be expected that the solution does not converge fast enough for a low density expansion in ρ to
give accurate predictions. Indeed we observe that for the first twenty orders in the density, the
solution does not seem to converge.
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Appendix C

Calculations for the smectic-A phase

Evaluating C+(qr, qz)

The Fourier transform of C+(~r, z) is given by

̂̂C+(~qr, qz) =

∫
d~re~qr·~r

∫
dzeqzzC+(~r, z). (C.1)

We employ the renormalised second virial approximation, which is given by

C+(~r, z) = Γ(η)f+(~r, z), (C.2)

where Γ(η) is the Parsons-Lee correction term, and f+(~r, z) is the connectedness Mayer f -function.
The precise definition of f+(~r, z) is dependent on the particle shape and connectedness criterion.
Here we use the cherry-pit model, where f+(~r, z) = 0 for hard-core overlap and no overlap, and
f+(~r, z) = 1 if the connectivity shells overlap. This connectivity shell consists of three separate
integrals that determine the contact volume: one due to cylinder-cylinder overlap and two due to
cap-cap overlap. Cylinder-cap contribution are not present, as the particles are perfectly aligned.

Hence, we obtain ̂̂C+(~qr, qz) = Γ(η) ̂̂f+(~qr, qz), where ̂̂f+(~qr, qz) is given by

̂̂f+(~qr, qz) =

∫ D+λr

D

d~r

∫ L

−L
dzei~qr·~reiqzz +

∫ D+λr

0

d~r

∫ L+λz

L

dzei~qr·~reiqzz+ (C.3)∫ D+λr

0

d~r

∫ −L−λz
−L

dzei~qr·~reiqzz

These integrals can be carried out to give

̂̂f+(qr, qz) = 8v0j0(qzL)

([
1 +

λr
D

]2 J1(qrD(1 + λr
D

))
1
2
qrD(1 + λr

D
)
− J1(qrD)

1
2
qrD

)

+ 8v0

[
1 +

λr
D

]2 J1(qrD(1 + λr
D

))
1
2
qrD(1 + λr

D
)

([
1 +

λz
L

]
j0

(
qzL

[
1 +

λz
L

])
− j0(qzL)

)
,

(C.4)
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where J1 is the Bessel function of order 1, j0 is the zeroth order spherical Bessel function, and
v0 = 1/4πLD2 is the volume of the hard core of a single cylinder. In the limit qr, qz → 0 this
reduces to ̂̂f+(0, 0) = 8v0

(
(1 +

λr
D

)2 − 1

)
+ 8v0(1 +

λr
D

)2λz
L
. (C.5)

Evaluating D+(qr, qz)

Next, we evaluate ̂̂D+(qr, qz) for the connectivity shell criterion. The full expression for ̂̂D+(qr, qz)
is given by

̂̂D+(~qr, qz) =
q

2π

∫ ∞
0

d~r

∫ ∞
−∞

dz1

∫ π
q

−π
q

dz2(1 +
∑
j

∆j cos(jqz2))C+(r, z1, z2)ei~qr·~reiqz ·z1 , (C.6)

The radial integrals in ̂̂D+(~qr, qz) are the same integrals as for C+(~qr, qz) and can therefore be
pre-integrated as

̂̂D+(qr, qz) =
3∑
i=1

ci(qr)
q

2π

∫ π
q

−π
q

dz2

∫ ∞
−∞

dz1(1 +
∑
j

∆j cos(jqz2))f+
i (z1, z2)eiqzz1 . (C.7)

Here, the functions ci(qz) are the placeholders for the radial pre-integrated parts, and f+
i (z1, z2)

represents the z-dependency of the Connectedness Mayer-f function. We have to sum three sep-
arate contribution due to the two additional connectivity shells around the head and tail of the
cylinder. The three z1 integrals of f+

i (z1, z2) need to be evaluated for fixed z2 from z2−L to z2 +L

for the cylinder and from z2 ± L to z2 ± (L + λz) for the end parts. Hence we split ̂̂D+(qr, qz) in
three integrals as

̂̂D+
1 (qr, qz) = c1(qr)

q

2π

∫ π
q

−π
q

dz2

∫ z2+L

z2−L
dz1(1 +

∑
j

∆j cos(jqz2))eiqz(z1), (C.8)

and ̂̂D+
2 (qr, qz) = c2(qr)

q

2π

∫ π
q

−π
q

dz2

∫ z2−L−λz

z2−L
dz1(1 +

∑
j

∆j cos(jqz2))eiqz(z1), (C.9)

and ̂̂D+
3 (qr, qz) = c3(qr)

q

2π

∫ π
q

−π
q

dz2

∫ z2+L+λz

z2+L

dz1(1 +
∑
j

∆j cos(jqz2))eiqz(z1). (C.10)

Comparing these expressions with the integrals in Equation (C.3), we immediately observe that
the z1 integrals are the same integrals, only shifted by a constant term z2. Hence, we can write

the complete ̂̂D+(qr, qz) as

̂̂D+(qr, qz) = ̂̂C+(qr, qz)
q

2π

∫ π
q

−π
q

dz2(1 +
∑
j

∆j cos(jqz2))eiqzz2 . (C.11)
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The only remaining task is to calculate the last integral. This is easily evaluated by writing the
cosine in complex form

q

2π

∫ π
q

−π
q

dz2

[
1 +

∑
j

∆j

2

(
eijqz2 + e−ijqz2

)]
eiqzz2 , (C.12)

or
q

2π

∫ π
q

−π
q

dz2

[
eiqzz2 +

∑
j

∆j

2

(
ei(qz+jq)z2 + ei(qz−jq)z2

)]
. (C.13)

This can be evaluated as

q

2π

∫ π
q

−π
q

dz2

(
eiqzz2 +

∑
j

∆j

2

(
ei(qz+jq)z2 + ei(qz−jq)z2

))
=

(
1 +

∑
j

(−1)j∆j
q2
z

q2
z − j2q2

)
j0

(
πqz
q

)
.

(C.14)

Hence, we can write ̂̂D+(qr, qz) as

̂̂D+(qr, qz) = ̂̂C+(qr, qz)

(
1 +

∑
j

(−1)j∆j
q2
z

q2
z − j2q2

)
j0

(
πqz
q

)
. (C.15)

Since the connectedness Ornstein-Zernike equation in the smectic-A phase, Equation (6.17), only
needs to be solved for qz = nq, with n ∈ Z, this expression can be simplified significantly by
evaluating it only at qz = nq. We need to take the proper limit on j0(πqz

q
) for qz = nq into account,

with n ≥ 1. Doing this allows us to obtain

̂̂D+(qr, 0) = ̂̂C+(qr, 0) (C.16)̂̂D+(qr, q) =
∆1

2
̂̂C+(qr, q) (C.17)

̂̂D+(qr, nq) =
∆n

2
̂̂C+(qr, nq) for n ≥ 2, (C.18)

While this derivation for ̂̂D+(qr, qz) is carried out specifically for the cherry-pit model, Equa-
tion (C.11) is, at least, valid for any connectivity criterion where the radial and z dependency
decouple.

The lateral correlation length

The function f(η, λz, λr) in Equation (6.35) is given by

f(η, λz, λr) = ηΓ(η)
a1 + a2 + a3

a4

, (C.19)
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where

a1 = 2λz + 2λr(2 + λr)(2 + λr(2 + λr))(1 + λz) (C.20)

− (∆1)2
[
j0(Q)− (1 + λr)

4(1 + λz)j0((1 + λz)Q)
]
,

and

a2 = 16(−2 + (∆1)2)Γ(η)(λz + λr(2 + λr)(2 + λr(2 + λr))(1 + λz))η× (C.21)[
−j0(Q) + (1 + λr)

2(1 + λz)j0((1 + λz)Q)
]
,

and

a3 = 32(−2 + ∆2
1)2η2(λz + λr(2 + λr)(2 + λr(2 + λr))(1 + λz))× (C.22)[

j0(Q)− (1 + λr)
2(1 + λz)j0(Q(1 + λz))

]2
Γ(η)2,

and
a4 =

[
1− 4

(
∆2

1 − 2
)
ηΓ(η)

(
j0(Q)− (λr + 1)2(λz + 1)j0((λz + 1)Q)

)]2
. (C.23)
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Appendix D

Line segments: Contact angles

In order to calculate the overlap coefficients AMN for line segments, we need to obtain the contact
angles for all positions and orientations for the line segments. The parametric equation for a line
segment is given by (

ya
xa

)
=

(
y1

x1

)
+ t1

[(
y2

x2

)
−
(
y1

x1

)]
, (D.1)

where x1,2 and y1,2 are the coordinates of the end points of a line segment, and 0 ≤ t1 ≤ 1. Both
line segments in Figure D.1 can be expressed in this parametric expression. We can extract the
intersect coordinates for two line segments by writing the parametric equation for both lines, and
equating the y and x coordinates. Solving for t1,2 gives us

t1 =
(x4 − x3)(y1 − y3)− (x1 − x3)(y4 − y3)

(x2 − x1)(y4 − y3)− (x4 − x3)(y2 − y1)
(D.2)

t2 =
(x2 − x1)(y1 − y3)− (x1 − x3)(y2 − y1)

(x2 − x1)(y4 − y3)− (x4 − x3)(y2 − y1)
, (D.3)

where we can express all xi, yi as functions of L, r, θ1 and θ2 using trigonometry. Inserting the
proper expressions and after some algebra, we obtain

t1 =
1

2
+ x

sin θ2

cos (θ1 + θ2)
(D.4)

t2 =
1

2
− x sin θ1

cos (θ1 + θ2)
, (D.5)

where x = r/L. Next, the contact angles for line segments can be calculated by noting that
contact always occurs at the end-point of one of the two line segments. Hence, we need to solve
both t1,2 = 0 and t1,2 = 1 as function of θ2. This gives multiple solutions, which have to be checked
for consistency with 0 ≤ t1,2 ≤ 1 and 0 ≤ θ2 ≤ π. Doing so gives

θ2a(x, θ1) =

{
arccos cos θ1−2x√

1+4x2−4x cos θ1
for θ1 ≤ arccosx,

θ1 + arcsin 2x sin θ1 for θ1 > arccosx,
(D.6)

θ2b(x, θ1) = π + θ1 − arcsin 2x sin θ1. (D.7)

91



θ1
θ2

Figure D.1: A schematic overview of the coordinates, angles and distance coordinate r necessary to
describe overlap for line segments.
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Appendix E

Connectedness-shell in one dimension

Similar to the three-dimensional case, we can investigate the cherry-pit model in one dimension
[25]. In the presented method, we assume that the diameter σ of the hard core of the particle is
larger than half of the diameter d of entire particle, i.e., hard core and connectivity shell. In that
case we can cast the auxiliary function Q(r) as

Q(r) = Qa(r), 0 < r < d− σ,
= Qb(r − σ), σ < r < d, (E.1)

and it can be easily shown that Q(r) is zero in between these regions. We set d = 1 for convenience.
This allows us to rewrite the one-dimensional factorised connectedness Ornstein-Zernike equation,
Equation (3.21), as two equations

0 = Qa(r) + ρ

∫ 1

r+σ

dsP (s− r)Qb(s− σ) (E.2)

and

P (r + σ) = Qb(r) + ρ

∫ r

0

dsP (r + σ − s)Qa(s), (E.3)

where P (r) is given by the Percus-Yevick radial distribution function. This distribution function
is exact in one dimension and completely known as

gPY(x) =
1

η

∞∑
k=1

Θ(x− k)

(
η

1− η

)k
(x− k)k−1

(k − 1)!
exp [t1(x− k)], (E.4)

where t1 = − η
1−η and x = r

σ
[40]. Similarly to the connectedness-shell method in three dimensions

by DeSimone et al. [25], we can cast these equations in two differential equations as

0 = Q′a(r) +
t1
σ

(Qa(r) +Qb(r)), (E.5)

0 = Q′b(r)− t1
σ

(Qa(r) +Qb(r)). (E.6)
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These two coupled first order homogeneous differential equations can be solved via standard meth-
ods. Doing this, we find that the characteristic equation has a double zero root and the solution
is therefore given by a polynomial with the maximum order of 2. Hence, we write these equations
as

Qa(r) = C1r + C2r
2 + C3 (E.7)

Qb(r) = −C1r − C2r
2 + C4, (E.8)

with the boundary conditions

Qa(1− σ) = 0, (E.9)

Qb(0) =
1

1− η
, (E.10)

1

1− η
t1
σ

= Q′b(0)− t1
σ
Qa(0), (E.11)

0 = Q′a(1− σ) +
t1
σ
Qb(1− σ). (E.12)

This allows us to write Q(r) as a piecewise continuous function of r, given by

Q(r) =


η(r+σ−1)

(1−η)(η+σ−2ησ)
, r < 1− σ

0, 1− σ ≤ r ≤ σ
σ−η(r+σ−1)

(1−η)(1η+σ−2ησ)
, σ < r < 1.

(E.13)

Using this expression, we can calculate the mean cluster size as

S =
1

Q̂(0)2
=

(η + σ − 2ησ)2

(−ησ + σ)2
. (E.14)

The value of the pair connectedness function just outside the connectedness shell can be obtained
by evaluating Equation (3.21) at 1− and 1+. This gives

P (1+) = gPY (1/σ)−Q(1−), (E.15)

which to the lowest non-zero order in η is given by

P (1+) =

(
−1

2
− 1

2σ
+

1

σ

)
η2 +O(η3). (E.16)

This is zero for η = 0 and negative for 0 < η ≤ 1. Hence, the pair connectedness function shows
unphysical behaviour, as it is, by definition, a positive quantity.
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Appendix F

Details of the numerical scheme

We have solved the Ornstein-Zernike equation with the Percus-Yevick closure via iteration. This
iteration is based on the Fourier-space Ornstein-Zernike equation, while the Percus-Yevick closure
is in real-space and can be summarised as

Zi(r)→ C+(r)→ Ĉ+(q)→ Ẑ(q)→ Zi+1(r).

Here, Z(r) = P (r)− C+(r). Zi(r) and Zi+1(r) are then mixed in some manner and used as input
for the next iteration step. If the difference in output Zi+1 and the input Zi is smaller than a
pre-set value, we assume the method to have converged. While the method is essentially simple,
some care is required in the Fourier transforms and to the mixing method as the iteration of the
(connectedness) Ornstein-Zernike equation near a critical region is often found to be problematic.
Numerically computing the radial Fourier transform in a two dimensional system is more trou-
blesome than its three-dimensional counterpart, as we cannot rely straightforwardly on accurate
FFT-methods. Many different methods have been proposed for two-dimensional radial fourier
transforms, often tailored to the specific problem at hand. We need a method that is accurate,
fast and can also calculate Hankel transforms of arbitrary integer order. For this purpose, we
have employed a method based on a logarithmic change of variables, i.e., we calculate the Fourier
transform on a grid where both the r-grid and q-grid have a logarithmic grid spacing. We have
relied on the FFTlog program that has been published by Hamilton [92], which we found to be
sufficiently accurate. We discuss this method in the next section.

FFTlog: Hankel Transforms on logarithmic grids

The FFTlog method is based on an logarithmic change of variables, and for a formal discussion
we refer to Talman [93] and Hamilton [92]. We start by considering the Hankel transform pair

G(q) =

∫ ∞
0

g(r)Jν(qr)qdr, (F.1)

and

g(r) =

∫ ∞
0

G(q)Jν(qr)rdq, (F.2)
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where Jν is the Bessel function of order ν, q is the complex wave vector and r is the radial
coordinate. Let us consider the change of variables r = eτ , q = eκ and define G̃(κ) = G(eκ) and
g̃(τ) = g(eτ ). This allows us to rewrite Equation (F.1) as

G̃(κ) =

∫ ∞
−∞

g̃(τ)Jν(e
τ+κ)eκdτeτ . (F.3)

We immediately observe that this integral is a convolution type integral. Since convolution type
integrals are naturally calculated via FFT methods, this allows us to calculate the Hankel transform
of arbitrary order ν by use of standard FFT methods. While this integral can be simplified further,
we do not discuss this here, as a clear derivation is available in Hamilton [92] and Talman [93].

The Hankel transform pair can be linked to the Fourier transform in any dimension via

F̂ (q) =
(2π)D/2

qD/2−1

∫ ∞
0

drrD/2f(r)JD/2−1(qr), (F.4)

and the inverse is defined as

f(r) =
r1−D/2

(2π)D/2

∫ ∞
0

dqqD/2F̂ (q)JD/2−1(qr), (F.5)

where D is the dimension. This allows us to calculate the Fourier transform in any dimension
with one simple and accurate method. We believe that this method is exceptionally well suited
to investigate continuum percolation numerically. Since the pair connectedness function P (r)
becomes long-ranged near the percolation threshold, it is necessary that the range of the sampling
in r extends to large values to properly sample the function. Secondly, upon approaching the
percolation threshold, the q → 0 component of P̂ (q) diverges. Hence, a small grid-spacing is
necessary near q = 0 to properly capture the divergence. The use of a logarithmic grid allows us
to do both without an excessively large number of grid points.

We now continue with the total number of grid points N and the logarithmic grid spacing ∆τ and
∆κ. We have chosen N as large as possible, such that we obtain results within a sensible time
frame. For isometric particles, and anisometric particles in a small basis expansion, N = 218 was
used. For the larger basis expansions, it was necessary to reduce the total number of grid points
N to N = 213. The grid spacing ∆τ was chosen such that the grid extends from rmin = 10−8

and rmax = 108. While ∆κ = ∆τ , the central point of the q-grid is slightly shifted to satisfy the
so-called low-ringing condition of the transform, given by

ln r0q0 =
L

N

[
1

π
Arg

(
2πiN/L

Γ(ν/2 + 1/2 + πiN/(2L))

Γ(ν/2 + 1/2− πiN/(2L))

)
+ z

]
, (F.6)

where L is the logarithmic period (i.e., ln rmax − ln rmin), Arg gives the phase of the complex
argument, Γ is the gamma function and z is an arbitrary integer number. This condition must be
satisfied for maximum accuracy in the transform [92]. We find that r0q0 ≈ 1. While the method is
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accurate in the central part of the transform, errors can accumulate at both small and large values
for r and q. Therefore we found it necessary to only include the central parts of the transform,
and set the lowest and highest quartile of the grid to zero [94]. Hence, we effectively reduce the
grid from rmin, qmin ≈ 10−4 to rmax, qmax ≈ 104. If the range of P (r) is significantly smaller than
rmax, it is necessary to tune the upper limit such that the accumulation of errors is prevented.

While we can sample close to q = 0, this transform is not able to sample at q = 0 itself. Similarly,
we do not sample for r, q > rtext, qmax. The region far away from the origins is not a problem, as
we can tune rmax sensibly, such that the connectedness functions P,C+ go to zero at the boundary
of this domain. The region around q = 0 can be more problematic, as the divergence near the
percolation threshold occurs at q → 0. We could either use a sensible extrapolation for small values
of r, q near r, q = 0, or only iterate up to densities where this lower boundary cut-off is not an
immediate problem [95]. We find that the solution is insensitive to such lower-end correction, while
the convergence rate of the solver is slightly increased. We have therefore opted to not include this
lower-end correction.

Numerical Procedure

Now that we have discussed all relevant parts of the Fourier transform, we continue with the
iterative solver. We show a schematic overview of the numerical procedure in Figure F.1. We have

Zj(0), ρj ,

AMN , εZ , . . .
Iteration i + 1 PY-closure

Fourier-
Transform

Ornstein-
Zernike

Equation

Inverse Fourier-
Transform

Check
error

∆Z ≤ εZ?

Zj(i+1) =
MDIIS(Zj(i))

ρj+1 = ρj + ∆ρ
Zj+1(0) =
f({Zj(end)})

Cmn(r)

Ĉmn(q)

Ẑmn(q)

Zmn(r)Yes

No

Figure F.1: Flowchart of the steps in the iterative solution strategy. It consists of two iteration procedures.
The inner iteration denoted by the red box solves the (connectedness) Ornstein-Zernike equation at a fixed
input density ρj . The outer iteration increases the density and insert an optimised input value Zj(0) into
the inner iteration. MDIIS is an appreviation for the mixing scheme, see main text.
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used the same strategy for both isometric and anisometric particles. For isometric particles the
superscript mn are to be ignored. The iterative solver consists of two iteration procedures. The
inner iteration is denoted in Figure F.1 by the red box. Here, the iteration number is given by
i. The iteration number of the outer iteration is given by j. The iterative solver starts at zero
density ρ0 = 0, with initial guess Zmn

0(0)(r) = 0. From the Percus-Yevick closure (4.15) we calculate

C+
0(1)(r) from Z0(0)(r) and AMN (r). Next, we take the Fourier (or Hankel) transform of {Cmn} and

insert this into Fourier-space Ornstein-Zernike Equation (4.9) to calculate a new value for Ẑ0(1)(q).
Finally we check if the error ∆Z is below a predefined value εZ . We define the error as

∆Z =
1

N

√√√√ N∑
l

(
Z00
j(i)(rl)− Z00

j(i−1)(rl)
)2

. (F.7)

If this error is smaller than a predefined error bound εZ , we assume the solution to be converged.
We use εZ = 10−4 − 10−8 as a convergence criterion. If the mean cluster size S becomes large, the
denominator in the connectedness Ornstein-Zernike equation in Fourier space, 1 − ρĈ00(q) ≈ 0,
and is therefore sensitive to small errors. Hence we find that is necessary to constrain the error in
C+(r) as well, where we have used εC = 10−5. If the error ∆Z and the error in C+(r) is larger
than the convergence criterion, we construct a best guess for the next iteration Z0(1) by using a
method known as the Modified Direct Inversion of Iterative Subspace (MDIIS) [96]. We discuss
this method in more detail later.

If, after n iterations, the error ∆Z and the error in C+(r) are smaller than the error bounds, we
assume the solution to have converged. We increase the density by ∆ρ and construct the next
input value Zj+1(0) by extrapolating from previous solutions, see the next section. We have found
that the convergence of the solver is highly sensitive on the input value, especially at high densities.
We discuss the steps that we have taken to improve the convergence in the next section.

Convergence

The (connectedness) Ornstein-Zernike equation is known to be difficult to solve via simple iterative
methods at high densities and either many iteration steps are necessary or convergence cannot not
be achieved. We have applied two methods to improve the convergence of the method.

Initial guess

The convergence of the method is highly dependent on accuracy of the initial guess to the final
solution. We start the iterative solver at low densities and increase the density with density
increments ∆ρ. At high densities, this is not enough and we approximate an initial guess for
Zj+1(0) by using a second order backward finite-difference scheme, using both the first and second
order derivative as

Zj+1(0) = Zj +

(
3

2
Zj−1 − 2Zj−2 +

1

2
Zj−3

)
+

1

2
(2Zj−1 − 5Zj−2 + 4Zj−3 − Zj−4) , (F.8)
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where Zj represent the converged solutions. While the order of the backwards finite difference
scheme is arbitrary, we did find that a two-point finite-difference scheme was not accurate enough.
If the iterative solution does not converge, it is necessary to either change the density increments
∆ρ, or reiterate previously obtained solutions to obtain better results.

MDIIS

The second method we have applied to improve the convergence is the use of the so-called Modified
Direct Inversion of Iterative Subspace (MDIIS). This is a method that tries to estimate the best
input Z(r) for the next iteration step by using the last m solutions. This best guess is constructed
from a linear combination of the last m input vectors

Z∗(r) =
m∑
l=1

clZ(l)(r) (F.9)

by requiring that the corresponding linear combination of the error vectors R(r)

R∗(r) =
m∑
l=1

clR(l)(r) (F.10)

approximates the zero vector in the mean-square sense [96]. We have used R(l)(r) = Zj(i−m+l)(r)−
Zj(i−1−m+l)(r) as the error vector. The optimal estimate for the next iteration step is then given
by

Zj(i+1) = Z∗(r) + δR∗(r). (F.11)

The number of included vectors m and the parameter δ are chosen such that the convergence is
optimal. If the number of iterations is less than m, the next best guess is constructed from n
vectors, where n is the number of iterations. While this method is relatively insensitive to the
choice for m and δ at low densities, we found that at high densities δ � 1 and m > 10 can
be necessary. These few steps are repeated until the error (F.7) is smaller than the convergence
criterion. If the error in Equation (F.7) grows significantly after the new iteration step, it can be
necessary to restart the method from the solution with the lowest error vector. Hence we flush the
last m input vectors and start again with one previous solution only. We have reset the iterative
solution when the new error given by Equation (F.7) is one order in magnitude larger than the
smallest error of the last m input vectors.

Test

We have tested our solver with the three-dimensional ideal particle model, for which an analytical
expression for the mean cluster size S is known. While this does not test the correct implementation
of the rotational invariant basis, it does confirm that our method is accurate enough to obtain
sensible results. We can obtain the mean cluster size S from either C+(r) or P (r) via

S =
1

1− ρĈ+(0)
, (F.12)
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or
S = 1 + ρP̂ (0). (F.13)

We find that the first method is unreliable. Equation (F.13) is significantly more accurate, and we
therefore estimate the percolation threshold via Equation (F.13) only. While we are not entirely

certain where this difference stems form, it is likely due to the fact that minor errors in Ĉ+(0)

have a significant effect when ρĈ+(0) ≈ 1, whereas this is not the case for Equation (F.13). In
Figure F.2a we plot the mean cluster size S for the three dimensional ideal particle model. Here we
have used a grid of N = 218, and have scaled the upper limit of the r-grid such that accumulation
of errors is prevented. We observe no difference between the analytical solution and the numerical
solution. In Figure F.2b we plot the relative error with respect to the analytical solution. The
error is negligible everywhere except near the percolation threshold, where it increases sharply.
We find the critical exponent γ = 2.06± 0.03, and the percolation threshold ηp = 0.5001± 0.0001,
both of which are close to the analytical result γ = 2, and ηp = 1

2
. The relative error in γ is larger

than the relative error in the percolation threshold ηp.

(a) (b)

Figure F.2: (a) The mean cluster size S as a function of the volume fraction η, where we have included
both the analytical result and the numerical result. (b) A plot of the relative error in the mean cluster size
S with respect to the analytical solution. The error is small everywhere except close to the percolation
threshold.
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Appendix G

Percolation in connected planes

Here we reduce the connectedness Ornstein-Zernike equation to matrix-form for a delta-wave ap-
proximation. In this approximation, we do not use the full smectic density distribution as obtained
from the bifurcation analysis, but use a discrete distribution, where the centres of mass of the par-
ticles are positioned perfectly in pre-defined planes. Although the perfect spatial ordering into
discrete layers is not physical, it can be seen as the limiting case in which the periodic density
distribution becomes sharply peaked, and is tractable and gives simple insight into the effect of a
periodic density modulation on the percolation threshold. We start by defining a density distribu-
tion as

ρ(z1,Ω1) = ρψ(z1), (G.1)

where ρ̃ is the average density and ψ(z1) is the normalised density distribution function given by

ψ(z1) =
n∑
l=1

αδ(z1 − lα). (G.2)

Here, α is the layer spacing and n is the total number of layers. We define the surface density on
each plane to be ρ0 = ρα. Next, we insert this form for the density modulation in the definition
of the inhomogeneous mean cluster size (2.8) and obtain

S(~qr, ~qz) = 1 +
A

N

∫ ∞
−∞

ρ(z2)

[∫ ∞
−∞

ρ(z1)P (~qr, z1, z2)eiqz(z1−z2)dz1

]
dz2, (G.3)

where A is the area of a layer and N is the total numbers of particles defined as

N =

∫
ρ(~r)d~r = nραA, (G.4)

where n is the total number of layers. Inserting the definition for the density distribution into the
mean cluster size gives

S(qr) =
1

n

n∑
m=1

(
1 + ρα

n∑
l=1

P̂ (qr,mα, lα)

)
. (G.5)

101



We can rewrite the connectedness Ornstein-Zernike Equation (2.12) in appropriate from by mul-
tiplying it with ρ(z2) defined by Equation (G.2) and integrating over z2, from which we obtain

P̂ (qr,mα, lα) = Ĉ+(qr,mα, lα) + ρα
n∑
j=1

Ĉ+(qr,mα, jα)P̂ (qr, jα, lα), (G.6)

We note that this equation is conveniently written in matrix notation as

P = Cc + ραCP, (G.7)

or
P = Cc[I + ραC]−1, (G.8)

where I is the identity matrix,

P,Cc =


f(qr, α, α) f(qr, α, α) . . . f(qr, α, nα)
f(qr, 2α, α) f(qr, 2α, 2α) . . . f(qr, 2α, nα)

...
...

. . .
...

f(qr, nα, α) f(qr, nα, 2α) . . . f(qr, nα, nα)

 , (G.9)

for f = P̂ , Ĉ+, and

C =


Ĉ+(qr, α, α) Ĉ+(qr, α, α) . . . Ĉ+(qr, α, nα)

Ĉ+(qr, 2α, α) Ĉ+(qr, 2α, 2α) . . . Ĉ+(qr, 2α, nα)
...

...
. . .

...

Ĉ+(qr, nα, α) Ĉ+(qr, nα, 2α) . . . Ĉ+(qr, nα, nα)

 . (G.10)

We assume that particle connections can be made between nearest layers only, i.e., Ĉ+(qr, lα, kα) =
0 for |l− k| > 1. The mean cluster size in the limit of infinite layers can be obtained by assuming
periodic boundary conditions on C, which we have evaluated with the help of Mathematica and
results in

S =
1

1− ρα
(
Ĉ+(0, 0) + 2Ĉ+(0, α)

) , (G.11)

where Ĉ+(0, α) = lim
qr→0

Ĉ+(qr, lα, kα) for |k − l| = 1. It can also be solved in closed form for a

finite number of layers. In this case, we can use a method developed by Hu and O’Connell [89], as
the matrix C is a triband matrix with constant bands. This allows us to obtain the percolation
threshold as

1 = ρα

(
Ĉ+(0, 0) + 2 cos

(
1

k + 1
π

)
Ĉ+(0, α)

)
, (G.12)

where k is the total number of layers in the model.

102


	Introduction
	Percolation
	Thin Films
	Liquid crystals
	Liquid crystal phases in two dimensions
	Thesis outline

	Continuum Connectedness Percolation
	Clusters
	The connectedness Ornstein-Zernike Equation
	Closure theory
	The virial expansion closure

	I The Percus-Yevick Closure
	Percus-Yevick theory in Connectedness Percolation
	Introduction
	The Percus-Yevick closure
	Particle models
	Note on the accuracy of Percus-Yevick
	Duality in Percus-Yevick
	Analytical solutions
	Two dimensions

	Extension to anisometric particles
	Introduction
	Percus-Yevick for anisometric nanofillers
	Ideal anisotropic nanofillers
	Angular resolution
	Beyond Percus-Yevick


	II Percolation in a non-uniform spatial density profile
	Smectic-A phase
	Introduction
	Density Functional Theory
	The smectic-A density distribution

	Continuum percolation in the smectic-A phase
	Clusters
	The Inhomogeneous Ornstein-Zernike Equation
	The model
	Effects of a periodic density modulation
	Percolation in the smectic-A phase
	Deeper in the smectic-A phase

	Conclusion
	Outlook
	Bibliography
	Wiener-Hopf Factorisation
	The Percus-Yevick equation for disks
	Calculations for the smectic-A phase
	Line segments: Contact angles
	Connectedness-shell in one dimension
	Details of the numerical scheme
	Percolation in connected planes


