4 research outputs found

    Waterless Dyeing and In Vitro Toxicological Properties of Biocolorants from Cortinarius sanguineus

    Get PDF
    As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid–liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production

    Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo state, Brazil

    Get PDF
    Emerging contaminants have been considered one of the main concerns for ensuring the quality of water around the world. This work presents the results of 10 years of analyses carried out in the state of São Paulo (Brazil) that has the high population density and intense agricultural and industrial activities. In this work 58 compounds (9 hormones, 14 pharmaceuticals and personal care products, 8 industrial compounds, 17 pesticides and 10 illicit drugs) were determined from 2006 to 2015 in 708 samples including raw and treated sewage, surface and ground and drinking waters. A preliminary risk assessment for aquatic life protection identified potential risks for caffeine, paracetamol, diclofenac, 17α-ethynylestradiol, 17β-estradiol, estriol, estrone, testosterone, triclosan, 4-n-nonylphenol, bisphenol A, atrazine, azoxystrobin, carbendazim, fipronil, imidacloprid, malathion and tebuconazole. Drinking water criteria were available only for 22 compounds and for them no adverse effects were expected at the concentrations found, except for 17β-estradiol

    Waterless Dyeing and In Vitro Toxicological Properties of Biocolorants from Cortinarius sanguineus

    No full text
    As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid–liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production

    Occurrence and risk assessment of an azo dye - The case of Disperse Red 1

    No full text
    Made available in DSpace on 2018-12-11T17:28:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-08-01Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L-1 was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L-1 was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new Criteria for Reporting and Evaluating ecotoxicity Data (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L-1. The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed.Faculty of Pharmaceutical Sciences University of São Paulo USPSchool of Technology State University of Campinas UNICAMPAmalex Environmental SolutionsChemical Institute State University of São Paulo UNESPSchool of Life Sciences Heriot-Watt UniversityDepartment of Biology and CESAM University of AveiroChemical Institute State University of São Paulo UNES
    corecore