2,885 research outputs found

    Assessment of autonomous and autogenous healing on cementitious grouts promoted by additions of microcapsules and crystalline admixtures

    Get PDF
    The demand for more sustainable building materials has led to the development of systems with self-repairing properties. The self-healing technology has been shown to be effective in concrete and mortars, however, this technology is not often studied in grouts. Cementitious systems can show an autogenous healing, i.e., an intrinsic ability to repair microcracks by themselves. This type of healing can be improved by the addition of crystalline admixtures. In addition, the crack healing can also be enhanced by adding other materials, e.g., through the incorporation of polymeric microcapsules into the cementitious matrix that will promote a healing effect but, in this case, an autonomous healing. Thus, the main objective of this work is to assess the effect of the addition of microcapsules and crystalline admixture on viscosity and water capillary absorption of cementitious grouts. Cementitious grouts (w/b = 0.46 and w/b = 0.39) were prepared containing microcapsules (3% by weight of binder) and crystalline admixture (3% by weight of binder). Rheological measurements and water sorptivity tests were made. Viscosity measurements were taken at 3, 20 and 60 minutes. Sorptivity tests were performed on cracked specimens in order to quantify the healing efficiency. Cracks were created 7 and 28 days after casting and the water absorption was measured for 7, 14 and 28 days after cracking. The results showed that the viscosity changed considerably depending on the w/b ratio and the healing agent type. Among all grouts, reference grout presented the highest viscosity and grout with microcapsules and crystalline admixture the lowest. The water absorption of the grouts with microcapsules was the lowest regardless of curing age and w/b ratio. Regarding crystalline admixture, at both curing ages the water absorption was quite high

    Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury

    Get PDF
    The frequencies of micronuclei (MN) and morphological nuclear abnormalities (NA) in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum), treated with 2 mg.L−1 methylmercury (MeHg), were analyzed. Two groups (nine specimens in each) were exposed to MeHg for different periods (group A - 24 h; group B - 120 h). A third group served as negative control (group C, untreated; n = 9). Although, when compared to the control group there were no significant differences in MN frequency in the treated groups, for NA, the differences between the frequencies of group B (treated for 120 h) and the control group were extremely significant (p < 0.02), thus demonstrating the potentially adverse effects of MeHg on C. macropomum erythrocytes after prolonged exposure

    Chiral 2pi exchange at order four and peripheral NN scattering

    Get PDF
    We calculate the impact of the complete set of two-pion exchange contributions at chiral order four (also known as next-to-next-to-next-to-leading order, N3LO) on peripheral partial waves of nucleon-nucleon scattering. Our calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of order four is substantially smaller than the one of order three, indicating convergence of the chiral expansion. We compare the prediction from chiral pion-exchange with the corresponding one from conventional meson-theory as represented by the Bonn Full Model and find, in general, good agreement. Our calculations provide a sound basis for investigating the issue whether the low-energy constants determined from pi-N lead to reasonable predictions for NN.Comment: 22 pages RevTex including 11 figure

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection

    Get PDF
    The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection

    The IG-DMR and the MEG3-DMR at Human Chromosome 14q32.2: Hierarchical Interaction and Distinct Functional Properties as Imprinting Control Centers

    Get PDF
    Human chromosome 14q32.2 harbors the germline-derived primary DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived secondary MEG3-DMR, together with multiple imprinted genes. Although previous studies in cases with microdeletions and epimutations affecting both DMRs and paternal/maternal uniparental disomy 14-like phenotypes argue for a critical regulatory function of the two DMRs for the 14q32.2 imprinted region, the precise role of the individual DMR remains to be clarified. We studied an infant with upd(14)pat body and placental phenotypes and a heterozygous microdeletion involving the IG-DMR alone (patient 1) and a neonate with upd(14)pat body, but no placental phenotype and a heterozygous microdeletion involving the MEG3-DMR alone (patient 2). The results generated from the analysis of these two patients imply that the IG-DMR and the MEG3-DMR function as imprinting control centers in the placenta and the body, respectively, with a hierarchical interaction for the methylation pattern in the body governed by the IG-DMR. To our knowledge, this is the first study demonstrating an essential long-range imprinting regulatory function for the secondary DMR
    corecore