139 research outputs found

    Defining Fatty Acid Changes Linked to Rumen Development, Weaning and Growth in Holstein-Friesian Heifers

    Get PDF
    After birth, as effectively monogastric animals, calves undergo substantial physiological changes to become ruminants by 3 months of age and reach sexual maturity at approximately 15 months of age. Herein, we assess longitudinal metabolomic changes in Holstein-Friesian (HF) heifers from birth until sexual maturity during this developmental process. Sera from 20 healthy, HF heifers were sampled biweekly from 2 weeks of age until 13 months of age and then monthly until 19 months of age. Sera were assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least squares discriminant analysis (PLS-DA) and unsupervised hierarchical clustering analysis (HCA) of the derived metabolomes indicated changes detectable in heifers’ sera over time. Time series analyses identified 30 metabolites that could be related to rumen development and weaning at ~3 months of age. Further time series analysis identified 40 metabolites that could be correlated with growth. These findings highlight the role of acetic acid and 3-phenylpropionate (3-PP) in rumen development and growth, suggest that weaning induces elevated levels of fatty acyls in response to a post-weaning stress-induced innate immune response and demonstrate the utilization of fatty acyls in growth. The identified metabolites offer serum metabolites which could inform the nutrition and healthy development of heifers

    Metabolomic Changes in Naturally MAP-Infected Holstein–Friesian Heifers Indicate Immunologically Related Biochemical Reprogramming

    Get PDF
    Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes weight loss, diarrhoea, and reduced milk yields in clinically infected cattle. Asymptomatic, subclinically infected cattle shed MAP bacteria but are frequently not detected by diagnostic tests. Herein, we compare the metabolite profiles of sera from subclinically infected Holstein-Friesian heifers and antibody binding to selected MAP antigens. The study used biobanked serum samples from 10 naturally MAP-infected and 10 control heifers, sampled monthly from ~1 to 19 months of age. Sera were assessed using flow infusion electrospray-high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least-squares discriminant analyses (PLS-DA) and hierarchical cluster analysis (HCA) of the data discriminated between naturally MAP-infected and control heifers. In total, 33 metabolites that differentially accumulated in naturally MAP-infected heifers compared to controls were identified. Five were significantly elevated within MAP-infected heifers throughout the study, i.e., leukotriene B4, bicyclo prostaglandin E2 (bicyclo PGE2), itaconic acid, 2-hydroxyglutaric acid and N6-acetyl-L-lysine. These findings highlight the potential of metabolomics in the identification of novel MAP diagnostic markers and particular biochemical pathways, which may provide insights into the bovine immune response to MAP

    Anak Penyamun Yang Menjadi Raja

    Get PDF

    Risk factors for African swine fever incursion in Romanian domestic farms during 2019

    Get PDF
    African swine fever (ASF) entered Georgia in 2007 and the EU in 2014. In the EU, the virus primarily spread in wild boar (Sus scrofa) in the period from 2014–2018. However, from the summer 2018, numerous domestic pig farms in Romania were affected by ASF. In contrast to the existing knowledge on ASF transmission routes, the understanding of risk factors and the importance of different transmission routes is still limited. In the period from May to September 2019, 655 Romanian pig farms were included in a matched case-control study investigating possible risk factors for ASF incursion in commercial and backyard pig farms. The results showed that close proximity to outbreaks in domestic farms was a risk factor in commercial as well as backyard farms. Furthermore, in backyard farms, herd size, wild boar abundance around the farm, number of domestic outbreaks within 2 km around farms, short distance to wild boar cases and visits of professionals working on farms were statistically significant risk factors. Additionally, growing crops around the farm, which could potentially attract wild boar, and feeding forage from ASF affected areas to the pigs were risk factors for ASF incursion in backyard farms.We acknowledge financial support from EFSA, ANSVSA and from the Danish Veterinary and Food Administration (FVST) as part of the agreement of commissioned work between the Danish Ministry of Food, Agriculture and Fisheries and the University of Copenhagen.Peer reviewe

    Experimental and field investigations of exposure, replication and transmission of SARS-CoV-2 in pigs in the Netherlands

    Get PDF
    In order to assess the risk of SARS-CoV-2 infection, transmission and reservoir development in swine, we combined results of an experimental and two observational studies. First, intranasal and intratracheal challenge of eight pigs did not result in infection, based on clinical signs and PCR on swab and lung tissue samples. Two serum samples returned a low positive result in virus neutralization, in line with findings in other infection experiments in pigs. Next, a retrospective observational study was performed in the Netherlands in the spring of 2020. Serum samples (N =417) obtained at slaughter from 17 farms located in a region with a high human case incidence in the first wave of the pandemic. Samples were tested with protein micro array, plaque reduction neutralization test and receptor-binding-domain ELISA. None of the serum samples was positive in all three assays, although six samples from one farm returned a low positive result in PRNT (titers 40-80). Therefore we conclude that serological evidence for large scale transmission was not observed. Finally, an outbreak of respiratory disease in pigs on one farm, coinciding with recent exposure to SARS-CoV-2 infected animal caretakers, was investigated. Tonsil swabs and paired serum samples were tested. No evidence for infection with SARS-CoV-2 was found. In conclusion, Although in both the experimental and the observational study few samples returned low antibody titer results in PRNT infection with SARS-CoV-2 was not confirmed. It was concluded that sporadic infections in the field cannot be excluded, but large-scale SARS-CoV-2 transmission among pigs is unlikely.info:eu-repo/semantics/publishedVersio

    Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus.

    Get PDF
    Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component

    Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands

    Get PDF
    In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface

    Highly Pathogenic Avian Influenza A(H5N1) Outbreaks in West Java Indonesia 2015-2016: Clinical Manifestation and Associated Risk Factors

    No full text
    Knowledge of outbreaks and associated risk factors is helpful to improve control of the Highly Pathogenic Avian Influenza A(H5N1) virus (HPAI) in Indonesia. This study was conducted to detect outbreaks of HPAI H5N1 in endemically infected regions by enhanced passive surveillance, to describe the clinical manifestation of these outbreaks and identify associated risk factors. From November 2015 to November 2016, HPAI outbreak investigations were conducted in seven districts of West Java. In total 64 outbreaks were confirmed out of 75 reported suspicions and outbreak characteristics were recorded. The highest mortality was reported in backyard chickens (average 59%, CI95%: 49-69%). Dermal apoptosis and lesions (64%, CI95%: 52-76%) and respiratory signs (39%, CI95%: 27-51%) were the clinical signs observed overall most frequently, while neurological signs were most frequently observed in ducks (68%, CI95%: 47-90%). In comparison with 60 non-infected control farms, the rate of visitor contacts onto a farm was associated with the odds of HPAI infection. Moreover, duck farms had higher odds of being infected than backyard farms, and larger farms had lower odds than small farms. Results indicate that better external biosecurity is needed to reduce transmission of HPAI A(H5N1) in Indonesia

    Monitoring of SARS-CoV-2 infection in mustelids

    No full text
    American mink and ferret are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but no information is available for other mustelid species. SARS-CoV-2 spreads very efficiently within mink farms once introduced, by direct and indirect contact, high within-farm animal density increases the chance for transmission. Between-farm spread is likely to occur once SARS-CoV-2 is introduced, short distance between SARS-CoV-2 positive farms is a risk factor. As of 29 January 2021, SARS-CoV-2 virus has been reported in 400 mink farms in eight countries in the European Union. In most cases, the likely introduction of SARS-CoV-2 infection into farms was infected humans. Human health can be at risk by mink-related variant viruses, which can establish circulation in the community, but so far these have not shown to be more transmissible or causing more severe impact compared with other circulating SARS-CoV-2. Concerning animal health risk posed by SARS-CoV-2 infection the animal species that may be included in monitoring plans are American mink, ferrets, cats, raccoon dogs, white-tailed deer and Rhinolophidae bats. All mink farms should be considered at risk of infection; therefore, the monitoring objective should be early detection. This includes passive monitoring (in place in the whole territory of all countries where animals susceptible to SARS-CoV-2 are bred) but also active monitoring by regular testing. First, frequent testing of farm personnel and all people in contact with the animals is recommended. Furthermore randomly selected animals (dead or sick animals should be included) should be tested using reverse transcriptase-polymerase chain reaction (RT-PCR), ideally at weekly intervals (i.e. design prevalence approximately 5% in each epidemiological unit, to be assessed case by case). Suspected animals (dead or with clinical signs and a minimum five animals) should be tested for confirmation of SARS-CoV-2 infection. Positive samples from each farm should be sequenced to monitor virus evolution and results publicly shared

    Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: Highly Pathogenic Avian Influenza

    No full text
    EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Highly Pathogenic Avian Influenza (HPAI). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for HPAI are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures as described in the diagnostic manual for HPAI were considered efficient for gallinaceous poultry, whereas additional sampling is advised for Anseriformes. The monitoring period was assessed as effective, and it was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to HPAI
    • …
    corecore