69 research outputs found

    Analytical and numerical seismic assessment of heritage masonry towers

    Get PDF
    Abstract The new Italian building code, published in 2018 [MIT in NTC 2018: D.M. del Ministero delle Infrastrutture e dei trasporti del 17/01/2018. Aggiornamento delle Norme Tecniche per le Costruzioni (in Italian), 2018], explicitly refers to the Italian “Guidelines for the assessment and mitigation of the seismic risk of the cultural heritage” [PCM in DPCM 2011: Direttiva del Presidente del Consiglio dei Ministri per valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni, G.U. n. 47 (in Italian), 2011] as a reliable source of guidance that can be employed for the vulnerability assessment of heritage buildings under seismic loads. According to these guidelines, three evaluation levels are introduced to analyse and assess the seismic capacity of historic masonry structures, namely: (1) simplified global static analyses; (2) kinematic analyses based on local collapse mechanisms, (3) detailed global analyses. Because of the complexity and the large variety of existing masonry typologies, which makes it particularly problematic to adopt a unique procedure for all existing structures, the guidelines provide different simplified analysis approaches for different structural configurations, e.g. churches, palaces, towers. Among the existing typologies of masonry structures there considered, this work aims to deepen validity, effectiveness and scope of application of the Italian guidelines with respect to heritage masonry towers. The three evaluation levels proposed by the guidelines are here compared by discussing the seismic risk assessment of a representative masonry tower: the Cugnanesi tower located in San Gimignano (Italy). The results show that global failure modes due to local stress concentrations cannot be identified if only simplified static and kinematic analyses are performed. Detailed global analyses are in fact generally needed for a reliable prediction of the seismic performance of such structures.</jats:p

    Shaking table tests and numerical analyses on a scaled dry-joint arch undergoing windowed sine pulses

    Get PDF
    The damages occurred during recent seismic events have emphasised the vulnerability of vaulted masonry structures, one of the most representative elements of worldwide cultural heritage. Although a certain consensus has been reached regarding the static behaviour of masonry arches, still more efforts are requested to investigate their dynamic behaviour. In this regard, the present paper aims to investigate the performance of a scaled dry-joint arch undergoing windowed sine pulses. A feature tracking based measuring technique was employed to evaluate the displacement of selected points, shading light on the failure mechanisms and gathering data for the calibration of the numerical model. This was built according to a micro-modelling approach of the finite element method, with voussoirs assumed very stiff and friction interface elements. Comparisons with existing literature are also stressed, together with comments about scale effects.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the Project POCI-01-0145-FEDER-007633.info:eu-repo/semantics/publishedVersio

    Design and analysis of cross vaults along history

    Get PDF
    The history of cross vaults began almost 2,000 years ago with a widespread use during the Middle Ages and Renaissance, becoming nowadays one of the most diffused and fascinating structural typologies of the European building cultural heritage. However, conversely to the undeniable excellence achieved by the ancient masons, the structural behavior of these elements is still at the center of the scientific debate. In this regard, with the aim of reviewing the knowledge on this subject as a concise and valuable support for researchers involved in conservation of historical buildings, with a focus on design rules and structural analysis, the present study firstly introduces the cross vaults from a historical perspective, by describing the evolution of the main geometrical shapes together with basic practical rules used to size them. Then, the article deals with the subsequent advancements in structural analysis methods of vaults, until the development of modern limit analysis.This work was partially carried out under the program "Dipartimento di Protezione Civile - Consorzio RELUIS", signed on 2013-12-27.info:eu-repo/semantics/publishedVersio

    Cell delivery systems using alginate : carrageenan hydrogel beads and fibers for regenerative medicine applications

    Get PDF
    The present work was focused on the development and characterization of new hydrogel systems based on natural origin polymers, namely, alginate and carrageenan, into different formats and with adequate properties to sustain the viability of encapsulated cells, envisioning their application as cell delivery vehicles for tissue regeneration. Different formulations of alginate and carrageenan hydrogels and different processing parameters were considered to determine the best conditions required to achieve the most adequate response in terms of the mechanical stability, cell viability, and functionality of the developed systems. The morphology, size, and structure of the hydrogels and their degradation behavior and mechanical properties were evaluated during this study. In addition to cytotoxicity studies, preliminary experiments were carried out to investigate the ability of alginate−carrageenan beads/fibers to encapsulate chondrocytes. The results obtained indicated that the different formulations, both in the form of beads and fibers, have considerable potential as cell-carrier materials for cell delivery in tissue engineering/ regenerative medicine applications.European NoE EXPERTISSUES - NMP3-CT-2004-500283Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/64070/2009

    Prebiotics from Marine Macroalgae for Human and Animal Health Applications

    Get PDF
    The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date

    Development of microspheres for biomedical applications: a review

    Get PDF
    An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
    corecore