22 research outputs found
Coherent search of continuous gravitational wave signals: extension of the 5-vectors method to a network of detectors
We describe the extension to multiple datasets of a coherent method for the
search of continuous gravitational wave signals, based on the computation of
5-vectors. In particular, we show how to coherently combine different datasets
belonging to the same detector or to different detectors. In the latter case
the coherent combination is the way to have the maximum increase in
signal-to-noise ratio. If the datasets belong to the same detector the
advantage comes mainly from the properties of a quantity called {\it coherence}
which is helpful (in both cases, in fact) in rejecting false candidates. The
method has been tested searching for simulated signals injected in Gaussian
noise and the results of the simulations are discussed.Comment: 9 pages, 2 figures. Journal of Physics: Conference Series, in pres
Validating delta-filters for resonant bar detectors of improved bandwidth foreseeing the future coincidence with interferometers
The classical delta filters used in the current resonant bar experiments for
detecting GW bursts are viable when the bandwidth of resonant bars is few Hz.
In that case, the incoming GW burst is likely to be viewed as an impulsive
signal in a very narrow frequency window. After making improvements in the
read-out with new transducers and high sensitivity dc-SQUID, the
Explorer-Nautilus have improved the bandwidth ( Hz) at the sensitivity
level of . Thus, it is necessary to reassess this
assumption of delta-like signals while building filters in the resonant bars as
the filtered output crucially depends on the shape of the waveform. This is
presented with an example of GW signals -- stellar quasi-normal modes, by
estimating the loss in SNR and the error in the timing, when the GW signal is
filtered with the delta filter as compared to the optimal filter.Comment: 7 pages, presented in Amaldi6, accepted for publication in Journal of
Physics: Conference Serie
A method for narrow-band searches of continuous gravitational wave signals
Targeted searches of continuous waves from spinning neutron stars normally
assume that the frequency of the gravitational wave signal is at a given known
ratio with respect to the rotational frequency of the source, e.g. twice for an
asymmetric neutron star rotating around a principal axis of inertia. In fact
this assumption may well be invalid if, for instance, the gravitational wave
signal is due to a solid core rotating at a slightly different rate with
respect to the star crust. In this paper we present a method for {\it
narrow-band} searches of continuous gravitational wave signals from known
pulsars in the data of interferometric detectors. This method assumes source
position is known to high accuracy, while a small frequency and spin-down range
around the electromagnetic-inferred values is explored. Barycentric and
spin-down corrections are done with an efficient time-domain procedure.
Sensitivity and computational efficiency estimates are given and results of
tests done using simulated data are also discussed.Comment: 13 pages; 6 figures; accepted in PR
Novel directed search strategy to detect continuous gravitational waves from neutron stars in low- and high-eccentricity binary systems
We describe a novel, very fast and robust, directed search incoherent method
for periodic gravitational waves (GWs) from neutron stars in binary systems. As
directed search, we assume the source sky position to be known with enough
accuracy, but all other parameters are supposed to be unknown. We exploit the
frequency-modulation due to source orbital motion to unveil the signal
signature by commencing from a collection of time and frequency peaks. We
validate our pipeline adding 131 artificial continuous GW signals from pulsars
in binary systems to simulated detector Gaussian noise, characterized by a
power spectral density Sh = 4x10^-24 Hz^-1/2 in the frequency interval [70,
200] Hz, which is overall commensurate with the advanced detector design
sensitivities. The pipeline detected 128 signals, and the weakest signal
injected and detected has a GW strain amplitude of ~10^-24, assuming one month
of gapless data collected by a single advanced detector. We also provide
sensitivity estimations, which show that, for a single- detector data covering
one month of observation time, depending on the source orbital Doppler
modulation, we can detect signals with an amplitude of ~7x10^-25. By using
three detectors, and one year of data, we would easily gain more than a factor
3 in sensitivity, translating into being able to detect weaker signals. We also
discuss the parameter estimate proficiency of our method, as well as
computational budget, which is extremely cheap. In fact, sifting one month of
single-detector data and 131 Hz-wide frequency range takes roughly 2.4 CPU
hours. Due to the high computational speed, the current procedure can be
readily applied in ally-sky schemes, sieving in parallel as many sky positions
as permitted by the available computational power
A method to search for long duration gravitational wave transients from isolated neutron stars using the generalized FrequencyHough
We describe a method to detect gravitational waves lasting
emitted by young, isolated neutron stars, such as those that could form after a
supernova or a binary neutron star merger, using advanced LIGO/Virgo data. The
method is based on a generalization of the FrequencyHough (FH), a pipeline that
performs hierarchical searches for continuous gravitational waves by mapping
points in the time/frequency plane of the detector to lines in the
frequency/spindown plane of the source. We show that signals whose spindowns
are related to their frequencies by a power law can be transformed to
coordinates where the behavior of these signals is always linear, and can
therefore be searched for by the FH. We estimate the sensitivity of our search
across different braking indices, and describe the portion of the parameter
space we could explore in a search using varying fast Fourier Transform (FFT)
lengths.Comment: 15 figure
Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures
We describe a result coming from an experiment based on an Al-Mg alloy (~ 5%
Mg) suspended bar hit by an electron beam and operated above and below the
termperature of transition from superconducting to normal state of the
material. The amplitude of the bar first longitudinal mode of oscillation,
excited by the beam interacting with the bulk, and the energy deposited by the
beam in the bar are the quantities measured by the experiment. These
quantities, inserted in the equations describing the mechanism of the mode
excitation and complemented by an independent measurement of the specific heat,
allow us to determine the linear expansion coefficient of the material.Comment: 13 pages, 4 figure
Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS
Dutch guideline on total hip prosthesis
Contains fulltext :
97840.pdf (publisher's version ) (Open Access