35 research outputs found
EUSO-OffLine: A Comprehensive Simulation and Analysis Framework
The complexity of modern cosmic ray observatories and the rich data sets they
capture often require a sophisticated software framework to support the
simulation of physical processes, detector response, as well as reconstruction
and analysis of real and simulated data. Here we present the EUSO-OffLine
framework. The code base was originally developed by the Pierre Auger
Collaboration, and portions of it have been adopted by other collaborations to
suit their needs. We have extended this software to fulfill the requirements of
UHECR detectors and VHE neutrino detectors developed for the JEM-EUSO. These
path-finder instruments constitute a program to chart the path to a future
space-based mission like POEMMA. For completeness, we describe the overall
structure of the framework developed by the Pierre Auger collaboration and
continue with a description of the JEM-EUSO simulation and reconstruction
capabilities. The framework is written predominantly in modern C++ and
incorporates third-party libraries chosen based on functionality and our best
judgment regarding support and longevity. Modularity is a central notion in the
framework design, a requirement for large collaborations in which many
individuals contribute to a common code base and often want to compare
different approaches to a given problem. For the same reason, the framework is
designed to be highly configurable, which allows us to contend with a variety
of JEM-EUSO missions and observation scenarios. We also discuss how we
incorporate broad, industry-standard testing coverage which is necessary to
ensure quality and maintainability of a relatively large code base, and the
tools we employ to support a multitude of computing platforms and enable fast,
reliable installation of external packages. Finally, we provide a few examples
of simulation and reconstruction applications using EUSO-OffLine
Estimation of the exposure for the air shower detection mode of EUSO-SPB1
EUSO-SPB1 was a balloon-borne pathfinder mission of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. A 12-day long flight started from New Zealand on April 25th, 2017 on-board the NASA's Super Pressure Balloon. With capability of detecting EeV energy air showers, the data acquisition was performed using a 1 m^2 two-Fresnel-lens UV-sensitive telescope with fast readout electronics in the air shower detection mode over ~30 hours at ~16--30 km above South Pacific. Using a variety of approaches, we searched for air shower events. Up to now, no air shower events have been identified. The effective exposure, regarding the role of the clouds in particular, was estimated based on the air shower and detector simulations together with a numerical weather forecast model. Compared with the case assuming the fully clear atmosphere conditions, more than ~60% of showers are detectable regardless the presence of the clouds. The studies in the present work will be applied in the follow-up pathfinders and in the future full-scale missions in the JEM-EUSO program
Science of atmospheric phenomena with JEM-EUSO
The main goal of the JEM-EUSO experiment is the study of Ultra HighEnergy Cosmic Rays (UHECR, 10^19 - 10^21 eV ), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. Thepaper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana-2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE-TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 - 1994 detection was performed fromsatellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 - 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena.Fil: Adams, J. H.. University of Alabama in Huntsville; Estados UnidosFil: Ahmad, S.. Ecole Polytechnique; FranciaFil: Albert, J. N.. Univ Paris-Sud; FranciaFil: Allard, D.. Univ Paris Diderot; FranciaFil: Anchordoqui, L.. University of Wisconsin-Milwaukee; Estados UnidosFil: Andreev, V.. University of California; Estados UnidosFil: Anzalone, A.. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo; ItaliaFil: Arai, Y.. High Energy Accelerator Research Organization (KEK); JapónFil: Asano, K.. Tokyo Institute of Technology; JapónFil: Ave Pernas, M.. Universidad de Alcala (UAH); EspañaFil: Barrillon, P.. Univ Paris-Sud; FranciaFil: Batsch, T.. Skobeltsyn Institute of Nuclear Physics; RusiaFil: Bayer, J.. University of Tubingen; AlemaniaFil: Bechini, R.. Universita’ di Torino; ItaliaFil: Belenguer, T.. Instituto Nacional de Tecnica Aeroespacial (INTA); EspañaFil: Bellotti, R.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Belov, K.. University of California; Estados UnidosFil: Berlind, A. A.. Vanderbilt University; Estados UnidosFil: Bertaina, M.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Biermann, P. L.. Karlsruhe Institute of Technology (KIT); AlemaniaFil: Biktemerova, S.. Joint Institute for Nuclear Research; RusiaFil: Blaksley, C.. Univ Paris Diderot; FranciaFil: Blanc, N.. Swiss Center for Electronics and Microtechnology (CSEM); SuizaFil: Blecki, J.. Space Research Centre of the Polish Academy of Sciences (CBK; PoloniaFil: Blin-Bondil, S.. Ecole Polytechnique; FranciaFil: Blumer, J.. Karlsruhe Institute of Technology (KIT),; AlemaniaFil: Bobik, P.. Institute of Experimental Physics; EslovaquiaFil: Bogomilov, M.. University of Sofia; BulgariaFil: Bonamente, M.. University of Alabama in Huntsville; Estados UnidosFil: Supanitsky, Alberto Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: The JEM-EUSO Collaboration
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Science and mission status of EUSO-SPB2
The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observa- tional goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth’s limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals
Expected Performance of the EUSO-SPB2 Fluorescence Telescope
The Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2) is under development, and will prototype instrumentation for future satellite-based missions, including the Probe of Extreme Multi-Messenger Astrophysics (POEMMA).
EUSO-SPB2 will consist of two telescopes. The first is a Cherenkov telescope (CT) being developed to identify and estimate the background sources for future below-the-limb very high energy (E>10 PeV) astrophysical neutrino observations, as well as above-the-limb cosmic ray induced signals (E>1 PeV).
The second is a fluorescence telescope (FT) being developed for detection of Ultra High Energy Cosmic Rays (UHECRs).
In preparation for the expected launch in 2023, extensive simulations tuned by preliminary laboratory measurements have been performed to understand the FT capabilities.
The energy threshold has been estimated at 10 eV, and results in a maximum detection rate at 10 eV when taking into account the shape of the UHECR spectrum.
In addition, onboard software has been developed based on the simulations as well as experience with previous EUSO missions.
This includes a level 1 trigger to be run on the computationally limited flight hardware, as well as a deep learning based prioritization algorithm in order to accommodate the balloon’s telemetry budget.
These techniques could also be used later for future, space-based missions
Expected performance of the K-EUSO space-based observatory
K-EUSO is a planned mission of the JEM-EUSO program for the study of ultra-high energy cosmic rays (UHECR) from space, to be deployed on the International Space Station. The K-EUSO observatory consists of a UV telescope with a wide field of view, which aims at the detection of fluorescence light emitted by extensive air showers (EAS) in the atmosphere. The EAS events will be sampled with a time resolution of 1--2.5 μs to reconstruct the entire shower profile with high precision. The detector consisting of independent pixels will allow a spatial resolution of 700 m on ground. From a 400 km altitude, K-EUSO will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. In this contribution, we present estimates of the performance of the observatory: an estimation of the expected exposure and triggered event rate as a function of energy and the event reconstruction performance, including resolution of arrival directions and energy of UHECRs
EUSO-SPB: In-flight performance
The Extreme Universe Space Observatory on a Super Pressure Balloon (EUSO-SPB1) is a path-finder mission within the JEM-EUSO program with the aim of detecting, for the first time from the edge of space, Ultra-High Energy Cosmic Rays by means of the fluorescence technique. EUSO SPB was launched April 24th 23:51 UTC 2017 from Wanaka, New Zealand as a mission of opportunity on a NASA super pressure balloon test flight planned to circle the southern hemisphere. After 12 days 4 h aloft, the flight was terminated prematurely in the Pacific Ocean about 300 km SE of Easter Island. This presentation will review the instrument and its in-flight performance. Preparations for a EUSO-SPB2 mission is underway. © 2018 Elsevier B.V