97 research outputs found

    Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes

    Full text link
    The doping dependent isotope effect on the critical temperature (Tc) is calculated for multi-band multi-condensate superconductivity near a 2.5 Lifshitz transition. We focus on multi-band effects that arises in nano-structures and in density wave metals (like spin density wave or charge density wave) as a result of the band folding. We consider a superlattice of quantum stripes with finite hopping between stripes near a 2.5 Lifshitz transition for appearing of a new sub-band making a circular electron-like Fermi surface pocket. We describe a particular type of BEC (Bose-Einstein Condensate) to BCS (Bardeen-Cooper-Schrieffer condensate) crossover in multi-band / multi-condensate superconductivity at a metal-to-metal transition that is quite different from the standard BEC-BCS crossover at an insulator-to-metal transition. The electron wave-functions are obtained by solving the Schr\"odinger equation for a one-dimensional modulated potential barrier. The k-dependent and energy dependent superconducting gaps are calculated using the k-dependent anisotropic Bardeen-Cooper-Schrieffer (BCS) multi-gap equations solved joint with the density equation, according with the Leggett approach currently used now in ultracold fermionic gases. The results show that the isotope coefficient strongly deviates from the standard BCS value 0.5, when the chemical potential is tuned at the 2.5 Lifshitz transition for the metal-to-metal transition. The critical temperature Tc shows a minimum due to the Fano antiresonance in the superconducting gaps and the isotope coefficient diverges at the point where a BEC coexists with a BCS condensate. On the contrary Tc reaches its maximum and the isotope coefficient vanishes at the crossover from a polaronic condensate to a BCS condensate in the new appearing sub-band.Comment: 8 pages, 4 ps figure

    Definition of a new multi-level early warning procedure for landslide risk management

    Get PDF
    The identification of potentially critical events involving unstable slopes is a major aspect in the field of natural hazards risk mitigation and management. In this framework, Early Warning Systems (EWS) exploiting advanced technologies represent an efficient approach to decrease the risk generated by landslide phenomena, allowing to reduce the possibility of damages and losses of human lives. EWS effectiveness has increased significantly in recent years, thanks to relevant advances in sensing technologies and data processing. In particular, the introduction of innovative monitoring instrumentation featuring automatic procedures and increased performances in terms of sampling rate and accuracy has permitted to develop EWS characterised by a near-real time approach. Among the several aspects involved in the development of a reliable Early Warning System, one of the most important is the ability to minimize the dissemination of false alarms, which should be avoided or identified in advance. The approach proposed in this study represents a new procedure aimed to assess the hazard level posed by a potentially critical event, previously identified by analysing displacement monitoring data. The process is implemented in a near-real time EWS and defines a total of five different hazard levels, on the basis of the results provided by two different models, namely an accelerating trend identification criterion and a failure forecasting model based on the Inverse Velocity Method (IVM). In particular, the forecasting analysis is performed only if the dataset elaborated by the onset-of-acceleration model highlights a potentially critical behaviour, which represents a first alert level. Following levels are determined by different conditions imposed on three parameters featured by the failure forecasting model, i.e. dataset dimension, coefficient of determination R-squared, and number of sensors displaying an accelerating trend. As these criteria get fulfilled, it is assumed that the monitored phenomenon is gradually evolving towards a more critical condition, thus reaching an increasing alert level depending on the analysis results. According to this classification, it is possible to set up for each single threshold a dedicated warning message, which could be automatically issued to authorities responsible of monitoring activities, in order to provide an adequate dissemination of information concerning the ongoing event. Moreover, the proposed procedure allows to customize the alert approach, giving the possibility to issue warning messages only if a certain Level is reached during the analysis

    application of innovative monitoring tools for safety and alert procedures in road tunnels

    Get PDF
    Abstract Tunnels and underground structures are one of the most important components of road and railway networks, especially near urban areas. For this reason, it is particularly important to identify potentially hazardous conditions in order to guarantee the structure's durability and practicability. This paper presents a case study where a seismic event severely damaged a road tunnel located in Central Italy, impairing its accessibility and leading to its closure for safety reasons. Following the damage assessment, and given the importance of this specific structure, it was decided to perform a series of renovation works aimed to restore the tunnel's operability. In this context, an innovative automatic monitoring device, able to measure the structure deformation, was installed in a critical section of the road tunnel. This instrument, called Cir Array, is specifically designed for near-real time monitoring of convergence phenomena and localized deformations inside underground structures, obtaining accurate and reliable results during their operational phase. The instrumentation provided useful information about the structure's conditions, playing a major role into assessing the tunnel's accessibility and safety during the renovation works. Moreover, thanks to its automated and high frequency sampling process, it will allow the implementation of dedicated warning procedures related to the passage of the vehicles inside the tunnel

    Analysis of the integration of the three-way catalyst thermal management in the on-line supervisory control strategy of a gasoline full hybrid vehicle

    Get PDF
    Full hybrid electric vehicles have proven to be a midterm viable solution to fulfil stricter regulations, such as those regarding carbon dioxide abatement. Although fuel economy directly benefits from hybridization, the use of the electric machine for propulsion may hinder an appropriate warming of the aftertreatment system, whose temperature is directly related to the emissions conversion efficiency. The present work evaluates the efficacy of a supervisory energy management strategy based on Equivalent Minimization Consumption Strategy (ECMS) which incorporates a temperature-based control for the thermal management of the Three-Way Catalyst (TWC). The impact of using only the midspan temperature of TWC is compared against the case where temperature at three different sampling points along the TWC length are used. Moreover, a penalty term based on TWC temperature has been introduced in the cost functional of the ECMS to allow the control of the TWC temperature operating window. In fact, beyond a certain threshold, the increase of the engine load, requested to speed up TWC warming, does not translate into a better catalyst efficiency, because the TWC gets close to its highest conversion rate. A gasoline P2 parallel full hybrid powertrain has been considered as test case. Results show that the effects of the different calibrations strategies are negligible on the TWC thermal management, as they do not provide any improvements in the fuel economy nor in the emissions abatement of the hybrid powertrain. This effect can be explained by the fact that the charge sustaining condition has a greater weight on the energy management strategy than the effects deriving from the addition of the soft constraints to control the TWC thermal management. These results hence encourage the use of simple setups to deal with the control of the TWC in supervisory control strategies for full hybrid electric vehicles

    Possible Fano resonance for high-T-c multi-gap superconductivity in p-Terphenyl doped by K at the Lifshitz transition

    Get PDF
    Recent experiments have reported the emergence of high temperature superconductivity with critical temperature TcT_c between 43K and 123K in a potassium doped aromatic hydrocarbon para-Terphenyl or p-Terphenyl. This achievement provides the record for the highest Tc in an organic superconductor overcoming the previous record of Tc=38 K in Cs3C60 fulleride. Here we propose that the driving mechanism is the quantum resonance between superconducting gaps near a Lifshitz transition which belongs to the class of Fano resonances called shape resonances. For the case of p-Terphenyl our numerical solutions of the multi gap equation shows that high Tc is driven by tuning the chemical potential by K doping and it appears only in a narrow energy range near a Lifshitz transition. At the maximum critical temperature, Tc=123K, the condensate in the appearing new small Fermi surface pocket is in the BCS-BEC crossover while the Tc drops below 0.3 K where it is in the BEC regime. Finally we predict the experimental results which can support or falsify our proposed mechanism: a) the variation of the isotope coefficient as a function of the critical temperature and b) the variation of the gaps and their ratios 2Delta/Tc as a function of Tc.Comment: 7 pages, 7 figure

    Metastable states in plateaus and multi-wave epidemic dynamics of Covid-19 spreading in Italy

    Full text link
    The control of Covid 19 epidemics by public health policy in Italy during the first and the second epidemic waves has been driven by using reproductive number Rt(t) to identify the supercritical (percolative), the subcritical (arrested), separated by the critical regime. Here we show that to quantify the Covid-19 spreading rate with containment measures (CSRwCM) there is a need of a 3D expanded parameter space phase diagram built by the combination of Rt(t) and doubling time Td(t). In this space we identify the dynamics of the Covid-19 dynamics Italy and its administrative Regions. The supercritical regime is mathematically characterized by i) the power law of Td vs. [Rt(t)-1] and ii) the exponential behaviour of Td vs. time, either in the first and in the second wave. The novel 3D phase diagram shows clearly metastable states appearing before and after the second wave critical regime. for loosening quarantine and tracing of actives cases. The metastable states are precursors of the abrupt onset of a next nascent wave supercritical regime. This dynamic description allows epidemics predictions needed by policymakers to activate non-pharmaceutical interventions (NPIs), a key issue for avoiding economical losses, reduce fatalities and avoid new virus variant during vaccination campaignComment: 14 pages, 5 figure

    Non-Quasi-Static Modeling of Printed OTFTs

    Get PDF

    Superconductivity of a striped phase at the atomic limit

    Get PDF
    Abstract The resonant amplification of the superconducting critical temperature, the isotope effect, the change of the chemical potential in a particular 2D striped phase formed by superconducting stripes of width L alternated by separating stripes of width W with a period l at the atomic limit is studied. The critical temperature shows a 'shape resonance' by tuning the p charge density where the chemical potential m is in the range E -m -E q " v , where E is the bottom of the nth n n 0 n superlattice subband for n ) 2, and " v is the energy cutoff for the pairing interaction. The maximum critical 0 superconducting temperature is reached at the cross-over from 2D to 1D behavior. The particular properties of this electronic phase and its similarities with the normal and superconducting properties of doped cuprate perovskites are discussed. q 1998 Elsevier Science B.V
    corecore