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Abstract. Full hybrid electric vehicles have proven to be a midterm viable solution to fulfil stricter regulations, such as those 

regarding carbon dioxide abatement. Although fuel economy directly benefits from hybridization, the use of the electric 

machine for propulsion may hinder an appropriate warming of the aftertreatment system, whose temperature is directly related 

to the emissions conversion efficiency. The present work evaluates the efficacy of a supervisory energy management strategy 

based on Equivalent Minimization Consumption Strategy (ECMS) which incorporates a temperature-based control for the 

thermal management of the Three-Way Catalyst (TWC).  The impact of using only the midspan temperature of TWC is 

compared against the case where temperature at three different sampling points along the TWC length are used. Moreover, a 

penalty term based on TWC temperature has been introduced in the cost functional of the ECMS to allow the control of the 

TWC temperature operating window. In fact, beyond a certain threshold, the increase of the engine load, requested to speed up 

TWC warming, does not translate into a better catalyst efficiency, because the TWC gets close to its highest conversion 

rate. A gasoline P2 parallel full hybrid powertrain has been considered as test case. Results show that the effects of the different 

calibrations strategies are negligible on the TWC thermal management, as they do not provide any improvements in the fuel 

economy nor in the emissions abatement of the hybrid powertrain. This effect can be explained by the fact that the charge 

sustaining condition has a greater weight on the energy management strategy than the effects deriving from the addition of the 

soft constraints to control the TWC thermal management. These results hence encourage the use of simple setups to deal with 

the control of the TWC in supervisory control strategies for full hybrid electric vehicles. 

 
INTRODUCTION 

The share of hybrid and electric vehicles in the worldwide market has increased in recent years to meet the stringent 

regulations concerning vehicle pollution [1], also thanks to the decrease of the their total cost of ownership [2]. Hybrid 

technologies for vehicle propulsion are a bridging solution towards fully electrified zero emission vehicles which will 

gradually play an important role in future mobility as issues concerning electric energy storage technologies and 

distribution are solved such as the charging speed regarding the usage of batteries or the extraction of raw materials when 

considering their manufacturing [3]. 

Nowadays the most common hybrid powertrains are powered by gasoline engines and this can be mainly explained 

by the fact that they are subject to lower exhaust emission content with respect to compression-ignition diesel engines, 

hence requiring less complex aftertreatment systems and so they are able to provide overall contained costs when 

hybridization of the powertrain is performed. 

Hybrid electric vehicles are characterized by a degree of electrification ranging from micro-hybrid vehicles to full-

hybrid ones [4]. There exist also different powertrain architectures, such as the series, the parallel and the series-parallel 

(also called power-split) that allow to change the number of degrees of freedom to operate the vehicle by using the internal 

combustion engine (ICE) and the electric machine/s (EM) at the same time [5]. An additional classification is based on 

the possibility to externally recharge the battery (i.e. home socket): in this case, a hybrid vehicle is referred to as plug-in 

hybrid (PHEV). PHEV powertrains have a greater capability to operate using the electrical energy, even though they 

require a higher level of electrification with respect to full-hybrid vehicles (FHEV). In terms of control, hybrid vehicles 

require a supervisory energy management control which is a higher-level control with respect to single components 

controls (i.e. engine control unit (ECU) and battery management system (BMS)). Supervisory energy management control 

relies on sophisticated algorithms which manage the power split between the internal combustion engine (ICE) and the 

electric machine/s (EM) and at the same time guarantee the best energy use to ensure the minimum fuel consumption. 
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FHEV and PHEV powertrains are characterized by different strategies: the former use the so-called charge-sustaining 

strategies as the battery energy must be preserved onboard, while the latter use a combination of charge-depleting and 

charge-sustaining strategy. 

In the past two decades, scientific literature was enriched by studies concerning different approaches to the control of 

the hybrid powertrains. Supervisory energy management strategies can be mainly classified in rule-based strategies and 

optimal control strategies. The advantage of optimal control strategies is the possibility to determine the power split 

between ICE and EM by solving an optimization problem where the cost function can be suitably modeled without 

embarking onto difficult control design as in the former case. Besides Dynamic Programming (DP), which returns the 

global optimal solution if the future state of the powertrain is known, Equivalent Consumption Minimization Strategy 

(ECMS) has proven to be a convenient solution when computational cost and real-time applicability are considered. 

Moreover, ECMS can be adapted in order to adjust the power-split between the ICE and EM according to feedback signals 

such as the battery state of charge (SoC) or the driving cycle related data, leading to results similar to the ones that can be 

obtained by more sophisticated model predictive control [6].  

A charge-depleting strategy may require frequent start-stops of the engine so that, especially concerning the 

aftertreatment system efficiency, this could be detrimental when the temperature of the converter is below the light-off 

temperature. A classification of strategies that consider the emissions into the optimization problem is reported in [7]: 

generally pollutants mass flow rates are incorporated into the cost function of the optimization problem of the supervisory 

energy management control strategy. Moreover a recent example of this implementation for a hybrid parallel powertrain 

can also be found in the work of Guille des Buttes et al. [8]. In a previous work [9], the Authors demonstrated how the 

integration of the three-way-catalyst (TWC) thermal management into the supervisory energy management control 

strategy, based on ECMS algorithm, is beneficial in terms of TWC operation by reducing the time to reach the light-off 

temperature. However, at an early stage of development, the midspan temperature of the TWC converter was used as the 

additional state variable to the control strategy algorithm to guarantee a suitable TWC warming. This choice was 

motivated to make a fair comparison with other studies found in literature as well as to not overcomplicate the control 

strategy.  

In the present work, a thorough analysis is made regarding the effects of different calibrations of the ECMS 

supervisory energy management control strategy which incorporates the TWC thermal management. More specifically, 

two aspects are covered: the first is a sensitivity study to investigate how some parameters dealing with TWC thermal 

management affect the output of the strategy in terms of fuel consumption and emission reduction; the second leverages 

the use of 1D TWC model to understand whether additional temperature sampling points along the TWC axis, beside 

middle section, can significantly improve the TWC thermal management. The analysis is carried through numerical 

simulation of the P2 parallel hybrid electric vehicle over the World-wide harmonized Light-duty Test Cycle (WLTC). 

 

MATERIALS AND METHODS 

Numerical Simulation Setup 

The present study was performed by means of numerical simulations. A conventional gasoline passenger vehicle, 

equipped with a TWC, as well as the 48V battery package and the electric machine were tested at “Centro Studi 

Componenti per Veicoli S.p.A” Bosch GmbH facility. For this reason, all the characteristic data used to build the 

numerical model is hidden for confidentiality. Nevertheless, this does not compromise the outcome of the presented work 

which has the goal to show the influence of different calibrations of the ECMS control strategy oriented to TWC thermal 

management on the vehicle performance. The numerical model of the supervisory energy management control strategy 

was developed in MATLAB-Simulink, while the powertrain model was built in GT-Suite. The control code was then 

paired to GT-Suite as represented in Fig. 1: all the control signals which result from the on-line optimization process 

carried out by the ECMS-based algorithm are sent to GT-Suite powertrain model, which sends back to the control strategy 

the powertrain components state signals, such as the battery SoC, the ICE actual output torque and the TWC temperature 

at the used sampling points. 

 



 

FIGURE 1. Schematic representation of the P2 HEV model: supervisory energy management strategy is built in MATLAB-

Simulink; the powertrain model is built in GT-Suite 

The hybrid vehicle performance is tested over the WLTC driving cycle, which is made of four distinctive driving 

phases, as represented in Fig. 2: urban (low), suburban (medium), rural (high) and highway (extra high). The modelling 

of the powertrain components is explained in the previous work of the Authors [9]. In particular, the ICE and EM were 

modelled with a map-based approach derived through calibration process at the test-bench. The 48V battery is modelled 

with a simple internal-resistance circuit which was calibrated with data recorded during experimental tests, such as: the 

relationship between open-circuit voltage, state of charge and battery mean temperature; the battery current limitations 

that are implemented in the model with an empirical relation, which depends on the electrical energy throughput. The 

thermal behavior of the TWC model was characterized with data collected during vehicle dynamic tests, while the 

chemical kinetics was modelled according to the work of Ramanathan et al. [10]   

 

 

FIGURE 2. World-wide harmonized Light-duty Test Cycle (WLTC) 

 

Adaptive Equivalent Consumption Minimization Strategy with TWC Thermal Management 

The Equivalent Consumption Minimization Strategy was developed over two decades ago by Paganelli et al. [11] 

intuitively and later analytically demonstrated with Pontryagin Minimum Principle. On the contrary of global 

optimization algorithms such as DP [12], ECMS solves an instantaneous optimization problem without any a-priori 

knowledge of the future state of the system and for this reason can only provide a sub-optimal solution for the entire time 

horizon of the problem. For the control of a FHEV powertrain, an instantaneous optimization problem is solved to 

determine the best control of the EM and ICE of the hybrid vehicle so to obtain a minimum fuel consumption while 

satisfying the charge-sustaining condition. The battery is a buffer of energy suitably stored and conveniently used to 

propel the vehicle and to allow the engine to operate more efficiently, this resulting in fuel economy improvement.  



This concept is put into practice by minimizing at each time instant a cost function which is written in terms of an 

equivalent fuel consumption (equation 1): 

 

�̇�(𝑢(𝑡), 𝑡)𝑓𝑢𝑒𝑙,𝑒𝑞𝑣 = �̇�(𝑢(𝑡), 𝑡)𝑓𝑢𝑒𝑙,𝐼𝐶𝐸 + 𝑠(𝑡) ∗ �̇�(𝑢(𝑡), 𝑡)𝑓𝑢𝑒𝑙,𝑅𝐸𝐸𝑆 (1) 

Where 𝑢(𝑡) is the control variable (for example it can be the ICE torque output), �̇�𝑓𝑢𝑒𝑙,𝐼𝐶𝐸 is the fuel spent by the ICE to 

propel the vehicle, the second term on the right-hand side of the equation, �̇�𝑓𝑢𝑒𝑙,𝑅𝐸𝐸𝑆 , is the fuel spent by the ICE to 

recharge the battery and possibly keep its energy content constant and it depends on the current use of the electrical energy 

of the battery by the electric machine. The equivalence is enabled by the so-called equivalence factor  𝑠(𝑡), which is a 

key parameter in the calibration of the control strategy. For convenience of implementation into the supervisory control, 

equation 1 can be expressed in terms of powers, by multiplying both sides of the equation by the fuel low heating value 

𝑄𝐿𝐻𝑉  [
𝐽

𝑘𝑔𝐾
]: 

 
𝑃𝑓𝑢𝑒𝑙,𝑒𝑞𝑣 = 𝑃𝑓𝑢𝑒𝑙,𝐼𝐶𝐸 + 𝑠(𝑡) ∗ 𝑃𝑓𝑢𝑒𝑙,𝑅𝐸𝐸𝑆 (2) 

The previous cost function used by ECMS control strategy can be derived analytically starting from the cost function 

of the global optimization problem (equation 3): 

𝐽(𝑢(𝑡)) = ∫ [𝑄𝐿𝐻𝑉�̇�𝑓𝑢𝑒𝑙(𝑢(𝑡), 𝑡) + 𝛼 (
𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)

∆𝑆𝑜𝐶𝑛𝑜𝑟𝑚

)

2𝑎

] 𝑑𝑡

𝑡𝑓

0

(3) 

Where a penalty is added to constrain the SoC deviation around a reference SoC value, 𝑆𝑜𝐶𝑟𝑒𝑓 , within an admissible 

range ΔSoCnorm (0.4 - 0.8). α is a weight factor and a the order of the penalty. The instantaneous optimization problem 

is derived by extracting the Hamiltonian function from equation 3: 

𝐻(𝑆𝑜𝐶, 𝑢(𝑡), 𝑡) = 𝑄𝐿𝐻𝑉�̇�𝑓(𝑢(𝑡), 𝑡) + 𝛼 (
𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)

∆𝑆𝑜𝐶𝑛𝑜𝑟𝑚

)

2𝑎

+ 𝜆(𝑡)𝑆𝑜𝐶̇ (4) 

Where the costate 𝜆(𝑡) =  −𝑠(𝑆𝑜𝐶(𝑡), 𝑡)𝑈𝑂𝐶(𝑆𝑜𝐶(𝑡))𝐸𝐵𝑎𝑡𝑡  . This brings to an equivalent expression for equation 2. If 

the optimal cost-to-go function 𝐽∗(𝑆𝑜𝐶, 𝑡), associated to 𝐽, were known, the optimal costate could be calculated according 

to Hamilton-Jacobi-Bellman theory: 

𝜆∗(𝑆𝑜𝐶, 𝑡) =
𝜕𝐽∗(𝑆𝑜𝐶, 𝑡)

𝜕𝑆𝑜𝐶
(5) 

Equation 5 can however be only calculated through an estimation of 𝐽∗, which is not known a-priori. According to the 

work of Ambhul [13] the equivalence factor can then be written as in equation 6, which gives the instantaneous cost 

function to be solved for a fuel-economy oriented control strategy: 

𝑠(𝑡) =  𝑠0 + ∫
𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝜏)

𝑇𝑖

𝑑𝜏

𝑡

0

+ �̃�
(𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡))

2𝑎−1

𝑈𝑂𝐶(𝑆𝑜𝐶)𝐸𝑏𝑎𝑡𝑡

(6) 

Where 𝑠0 is a constant parameter, 𝑇𝑖  is the time of the integral term, �̃� derives from the linear approximation of the SoC 

trajectory over a given time, 𝑈𝑂𝐶  is the battery open-circuit voltage and 𝐸𝑏𝑎𝑡𝑡 the battery nominal capacity. A strategy in 

this sense would try to minimize the fuel consumption by preferring the use of the electric machine whenever the use of 

the ICE is less efficient, for example during low vehicle speed operation. Moreover, the supervisory control strategy could 

provoke too frequent ICE shutoffs with a possible decay in aftertreatment performance, especially if the light-off 

temperature has not been yet reached. For this reason, the cost function used in the optimization problem could be 

extended by integrating the thermal management of TWC. The TWC state variable adopted in this work is the catalyst 

temperature 𝜗𝑇𝑊𝐶,𝑖  measured at a point “i” on the axis of symmetry (assuming a cylindrical shape for the TWC). 

Moreover, the formulation can be generalized by including three sampling points for the temperature, at 
1

3
,  

1

2
 and at 

2

3
 of 

the length 𝐿 and a weighted sum (𝑤𝑖  is the generic weight factor) is used to take them into account so to use only one 

additional costate variable 𝜌, apart from 𝑠. 

𝐻(𝑢, 𝑡) = 𝑃𝑓𝑢𝑒𝑙(𝑢, 𝑡) + 𝑠𝑃𝑏𝑎𝑡𝑡(𝑢, 𝑡) + 𝛼 (
𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)

∆𝑆𝑜𝐶𝑛𝑜𝑟𝑚

)

2𝑎

+ 𝑘 (∑ 𝑤𝑖𝜗𝑇𝑊𝐶,𝑖

𝑖

) ∑ 𝑤𝑖𝜗𝑇𝑊𝐶,𝑖

𝑖

+𝜌 ∑ 𝑤𝑖�̇�𝑇𝑊𝐶,𝑖

𝑖

(7)

 

The sum is computed for the different temperature sampling points used: in this work three sampling points along the 

TWC axis are used 
𝐿

3
,  

𝐿

2
,  

2𝐿

3
. Similarly to the fuel economy oriented formulation, the fourth term in equation 7 is a penalty 



term that is added to penalize all candidate solutions that do not use the ICE when the TWC temperature is below the 

light-off temperature 𝑇𝑇𝑊𝐶
𝐿𝑂  and that use the ICE when the TWC temperature is above the admissible maximum limit 𝑇𝑇𝑊𝐶

𝑢𝑝
. 

The penalty factor 𝑘 is calculated according to Fig. 3, based on the weighted sum of the temperatures at the chosen 

sampling points along the TWC axis. The value of the penalty beyond 𝑇𝑇𝑊𝐶
𝑢𝑝

 can be suitably varied with a gradient value 

𝑔.  

 

 

FIGURE 3. TWC temperature penalty factor k: 𝑇𝑇𝑊𝐶
𝐿𝑂  is the light-off temperature and 𝑇𝑇𝑊𝐶

𝑢𝑝
 the temperature upper limit, g is the 

gradient value for the penalty beyond 𝑇𝑇𝑊𝐶
𝑢𝑝

 

In the first analysis presented in this work, the value of 𝑇𝑇𝑊𝐶
𝑢𝑝

 is set to three different values (400, 600, 800 °C). The 

objective is to benefit from the good TWC conversion efficiency already at a temperature of 500 °C  and hence to penalize 

a further usage of the ICE by activating the penalty term 𝑘, which can be also calibrated with different gradient values. 

Moreover, although new TWC technologies enable high operating temperatures in the range of 1000°C while ensuring 

good conversion efficiencies, the catalyst aging worsens at high temperatures and already in the range of 900 °C alumina 

sintering may occur [14], so that it would be ideal to control the maximum temperature reached by the TWC. 

 

RESULTS AND DISCUSSION 

This section is divided into two parts where each one independently analyzes a calibration aspect of the proposed 

strategy in order to understand its impact on the TWC thermal management and on the overall energy management 

strategy: the first one is to investigate the effect of different tunings of the TWC temperature penalty term, explained in 

equation 6; the second one focuses on understanding the impact of the addition of temperature sampling points along the 

TWC axis to the cost function formula, apart from the one used at the midspan. It is important to note that the control 

strategy was calibrated every time so to have a maximum deviation of the final battery SoC value from the target value 

𝑆𝑜𝐶𝑟𝑒𝑓  equal to 1%−
+ : this enables a fair comparison between different calibration setups in terms of fuel consumption 

and emissions, since the net battery energy balance is almost null. 

 

Calibration of the Penalty Term 

Two quantities define the penalty of the TWC desired temperature operational window, illustrated in Figure 3: the 

upper boundary of the zero-plateau 𝑇𝑇𝑊𝐶
𝑢𝑝

 and the slope of the segment beyond it. The sensitivity analysis is carried out 

for 3 values of 𝑇𝑇𝑊𝐶
𝑢𝑝

= {400,600,800} °𝐶 and the gradient value of the penalty factor 𝑘, 𝑔 = {2,4,6}.  

For a comprehensive overview of the simulated nine cases, the results are compared by looking at the most representative 

data collected in Table 1: the TWC maximum temperature 𝑇𝑇𝑊𝐶
𝑚𝑎𝑥  evaluated for the low and medium parts of the WLTC, 

the time needed to reach the light-off temperature 𝑇𝑇𝑊𝐶
𝐿𝑂  as well as the fuel consumption and the TWC conversion 

efficiencies over the driving cycle, which are expressed in percentage deviation with respect to the baseline case 𝑇𝑇𝑊𝐶
𝑢𝑝

=

800 °𝐶 and gradient value equal to 2.  

 

 

 

𝑇𝑇𝑊𝐶
𝑢𝑝𝑇𝑇𝑊𝐶

𝐿𝑂



TABLE 1. Characteristic results of the TWC performance for different tunings of the temperature penalty term. Fuel consumption 

and conversion efficiencies are referred to the case highlighted in bold  

𝑇𝑇𝑊𝐶
𝑢𝑝

 [°C] 400 600 800 

Gradient value [-] 2 4 6 2 4 6 2 4 6 

(𝑇𝑇𝑊𝐶
𝑚𝑎𝑥)𝑊𝐿𝑇𝐶−𝑙𝑜𝑤  [°C] 720 725 726 724 727 729 730 727 730 

(𝑇𝑇𝑊𝐶
𝑚𝑎𝑥)𝑊𝐿𝑇𝐶−𝑚𝑒𝑑𝑖𝑢𝑚 [°C] 761 730 746 749 771 755 732 744 738 

Time to 𝑇𝑇𝑊𝐶
𝐿𝑂  [s] 31 31 31 31 31 31 31 31 31 

∆𝐹𝐶  [%] 2.88 3.07 2.63 1.60 7.18 5.76 0.00 0.49 1.58 

∆𝜂𝑁𝑂 [%] -2.46 2.44 3.04 0.10 6.47 -2.46 0.00 -3.03 1.16 

∆𝜂𝐻𝐶 [%] 0.85 1.37 1.83 1.21 -3.19 0.85 0.00 3.77 -1.04 

∆𝜂𝐶𝑂 [%] -0.09 0.59 0.74 0.41 0.01 -0.18 0.00 -0.20 -0.02 

 

In general, the temperature penalty term has a negligible effect for the thermal management control of the TWC. In 

fact, by looking at the Fig. 4a and Fig. 4b which show the maximum temperature measured at the sampling point 
𝐿

2
 for 

the 6 combinations of  𝑇𝑇𝑊𝐶
𝑢𝑝

 and slope factor in the first two driving phases of the WLTC, only in the initial urban driving 

phase, there is a small difference in the average temperature between the calibrations. Furthermore, also the increase of 

the slope factor of the penalty term does not have any effect in containing the TWC temperature within the desired 

temperature operational window [𝑇𝑇𝑊𝐶
𝐿𝑂 , 𝑇𝑇𝑊𝐶

𝑢𝑝
]. 

 

 
(a) 

 
(b) 

 

FIGURE 4. Maximum temperature of TWC at the sampling point located at half-length on the axis for different values of 𝑇𝑇𝑊𝐶
𝑢𝑝

. 

 Fig. 4a and Fig. 4b respectively report data for the low and medium phases of the WLTC 

This behavior can be better explained by looking at the SoC trajectories, plotted in Fig. 5a only for the cases 

corresponding to 𝑇𝑇𝑊𝐶
𝑢𝑝

= 600 °𝐶, used in Fig. 4, as an example. The increase in the penalty gradient value 𝑔 would look 

like to have a counter effect to the desired one (limiting the TWC temperature within [𝑇𝑇𝑊𝐶
𝐿𝑂 , 𝑇𝑇𝑊𝐶

𝑢𝑝
] ), resulting in a greater 

use of the ICE which recharges the battery in the first half of the driving cycle and simultaneously heats the TWC. 

However, this behavior is caused by the charge sustaining condition of the energy management control strategy, that can 

be maintained only by increasing the constant term of the equivalence factor, 𝑠0, as it is displayed in Fig. 5b. The increase 

of 𝑠0 value has a positive effect on the ICE usage. In conclusion it can be remarked that the charge sustaining condition 

and the TWC thermal management control have an opposite effect on the energy management strategy of the hybrid 

powertrain and this leads to an unsuccessful control of the TWC thermal management by means of calibration of the 

presented supervisory energy management control strategy based on the a-ECMS algorithm. 



 

 
(a) 

  
 
 

(b) 
 

FIGURE 5. (a) Battery state-of-charge trajectories and (b) equivalence factor constant term 𝑠0 for the cases with 𝑇𝑇𝑊𝐶
𝑢𝑝

= 600 °𝐶 

Calibration with Additional Temperature Sampling Points 

Two additional temperature sampling points are considered apart from the one used at half of the length of the TWC 

axis. A preliminary observation must be made to highlight the difference of the three sampling points. The temperature 

evolution is delayed at an increasing distance from TWC inlet as can be seen from Fig. 6. 

 

 

FIGURE 6. TWC temperature measured at three sampling points on the axis. 

The integration of three temperature sampling points was then also studied for different values of the weight 

coefficients 𝑤1, 𝑤2 and 𝑤3. The expected behavior given by a calibration of these weights, so that the one corresponding 

to the furthest point from the TWC inlet (𝑤3) is set to a higher value than the one for the closest point to the TWC inlet 

(𝑤1), should be to favor a greater use of the ICE, at least in the initial part of the driving cycle, since the weighted-sum 

temperature is more influenced by the lower one at the extremal point (at 
2𝐿

3
). On the contrary, when 𝑤1 > 𝑤3 the effect 

should be opposite. The results obtained prove this concept as showed in Fig. 7, where the total energy output of the ICE 

is examined for the first phase of the WLTC. 



 

FIGURE 7. ICE energy output during the low phase of the WLTC driving cycle for three calibration setups of the weights 

Finally, similarly to the previous subsection, results are presented in Table 2. Data is presented as percentage deviation 

with respect to the baseline case with one TWC temperature sampling point for fuel consumption and TWC conversion 

efficiencies. As can be inferred from Table 2, when 𝑤1 value is higher than 𝑤3, the maximum temperature value achieved 

during the low driving phase of the WLTC is lower and this can be justified by the previous explanation about the expected 

effect of the weights tuning. However, once again the effect is negligible and it is reflected by the fact that fuel 

consumption increase is in the end very low when using a calibration which should favor a greater use of the ICE (𝑤3 >
𝑤1). Also, the variation in conversion efficiency for the most relevant polluting species is very small, but this effect is a 

direct consequence of how the TWC temperature varies over time.  

 
TABLE 2. Characteristic results of the TWC performance for different calibrations of the weights. Fuel consumption and conversion 

efficiencies are referred to the case highlighted in bold 

𝑇𝑇𝑊𝐶
𝑢𝑝

 [°C] 1 sampling 

point 

𝑤1 > 𝑤2 > 𝑤3 𝑤1 = 𝑤2 = 𝑤3 𝑤1 < 𝑤2 < 𝑤3 

(𝑇𝑇𝑊𝐶
𝑚𝑎𝑥)𝑊𝐿𝑇𝐶−𝑙𝑜𝑤  [°C] 

730 723 726 727 
(𝑇𝑇𝑊𝐶

𝑚𝑎𝑥)𝑊𝐿𝑇𝐶−𝑚𝑒𝑑𝑖𝑢𝑚 [°C] 732 734 750 730 

Time to 𝑇𝑇𝑊𝐶
𝐿𝑂  [s] 

31 31 31 31 

∆𝐹𝐶  [%] 
0.00 0.90 1.61 1.70 

∆𝜂𝑁𝑂 [%] 
0.00 2.80 2.44 3.16 

∆𝜂𝐻𝐶 [%] 0.00 2.25 3.05 1.35 

∆𝜂𝐶𝑂 [%] 
0.00 0.70 1.14 1.14 

 

To better clarify this point, the temperature evolution at the three sampling points is reported in Fig. 8. It can be seen 

how the impact of the different tunings on the TWC thermal management is negligible. The TWC behavior is strictly 

dependent on how the energy management strategy operates the power-split control between the ICE and EM, which 

must satisfy the charge sustaining condition.   
 



 

(a) 

 

(b) 

 

(c) 
 

FIGURE 8. TWC temperature at the three sampling points (a) L/3, (b) L/2, (c) 2L/3 for different calibrations of the weights 

 



CONCLUSIONS 

The three-way catalyst thermal management is an important aspect to take into account in the design of the supervisory 

energy management strategy for a gasoline hybrid electric vehicle, especially to mitigate the inefficiency of the catalyst 

during the cold start. This study analyzes different calibration setups of a supervisory energy management strategy, based 

on an Adaptive Equivalent Consumption Minimization Strategy algorithm, which integrates the three-way catalyst 

thermal management. Under the assumption that the engine is operated with a lambda close to 1, the fundamental 

parameter to determine the catalyst conversion efficiency is its temperature. Therefore, different configurations of the 

cost function were tested to analyze the impact of the developed supervisory energy management strategy on the three-

way catalyst thermal management. In particular, two aspects were evaluated: different tunings of the penalty term used 

to set the catalyst operating temperature window; the influence of additional temperature sampling points with respect to 

only one on the catalyst axis midspan. The investigation, which was carried out through numerical simulations, shows 

that the thermal management of the three way catalyst requires the use of the internal combustion engine to warm up the 

catalyst and to reduce the time to the light-off temperature in the early phase of the driving cycle. Moreover, the three-

way catalyst operational temperature could be maintained below the limit temperature (i.e. 800 °C), which is beyond the 

catalyst optimal operating temperature, so to prevent a fast aging. The results obtained though numerical simulation show 

that this aspect was not adequately fulfilled by the presented control strategy, even though different setups of the three-

way catalyst temperature penalty term were tested. In fact, when looking at the first phase of the WLTC driving cycle, as 

the penalty factor for the catalyst temperature was increased, there was only a decrease of almost 10 degrees in the 

maximum temperature of the catalyst. This outcome may be addressed to the level of electrification of the powertrain 

since it cannot run under pure electric mode for prolonged time, consequently leading to a continuous use of the engine 

and also to the constraining condition to maintain the battery state of charge within the range (0.4-0.8), which must 

however be satisfied to preserve battery life. Furthermore, exploiting the one-dimensional model of the three-way catalyst 

by adding two temperature sampling points along the catalyst axis, at 1/3 and 2/3 of its length, had a negligible impact on 

improving the thermal management of the catalytic converter. It can be concluded that as the charge sustaining condition 

must be satisfied, a proper calibration of the supervisory energy management control strategy fails to simultaneously 

satisfy the imposed condition for the three-way catalyst as it is expressed as a soft penalty.  

 

DEFINITIONS/ABBREVIATIONS 

BMS – Battery Management System 

DP – Dynamic Programming 

ECU – Engine Control Unit 

ECMS – Equivalent Consumption Minimization Strategy 

EM – Electric Machine 

FHEV – Full Hybrid Electric Vehicle 

ICE – Internal Combustion Engine 

SoC – State of Charge 

TWC – Three-way catalyst 

WLTC – World-wide harmonized Light-duty Test Cycle 
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