72 research outputs found

    Changes in the Extremes of the Climate Simulated by CCC GCM2 under CO2Doubling

    Get PDF

    Human-caused Indo-Pacific warm pool expansion

    Get PDF
    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.116Yscopu

    Detección del cambio climático

    Get PDF

    Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations

    Get PDF
    Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of 20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios. Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipita-tion extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are very large, both in the models and the available observationally based datasets. Changes in warm extremes generally follow changes in the mean summertime temperature. Cold ex-tremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With th

    Percentile indices for assessing changes in heavy precipitation events

    Get PDF
    Many climate studies assess trends and projections in heavy precipitation events using precipitation percentile (or quantile) indices. Here we investigate three different percentile indices that are commonly used. We demonstrate that these may produce very different results and thus require great care with interpretation. More specifically, consideration is given to two intensity-based indices and one frequency-based index, namely (a) all-day percentiles, (b) wet-day percentiles, and (c) frequency indices based on the exceedance of a percentile threshold. Wet-day percentiles are conditionally computed for the subset of wet events (with precipitation exceeding some threshold, e.g. 1 mm/d for daily precipitation). We present evidence that this commonly used methodology can lead to artifacts and misleading results if significant changes in the wet-day frequency are not accounted for. Percentile threshold indices measure the frequency of exceedance with respect to a percentile-based threshold. We show that these indices yield an assessment of changes in heavy precipitation events that is qualitatively consistent with all-day percentiles, but there are substantial differences in quantitative terms. We discuss the reasons for these effects, present a theoretical assessment, and provide a series of examples using global and regional climate models to quantify the effects in typical applications. Application to climate model output shows that these considerations are relevant to a wide range of typical climate-change applications. In particular, wet-day percentiles generally yield different results, and in most instances should not be used for the impact-oriented assessment of changes in heavy precipitation events
    corecore