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ABSTRACT

Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble
of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC)
diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of
20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The
simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in
experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios.

Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as
compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally
larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipita-
tion extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are
very large, both in the models and the available observationally based datasets.

Changes in warm extremes generally follow changes in the mean summertime temperature. Cold ex-
tremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of
cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With the
exception of northern polar latitudes, relative changes in the intensity of precipitation extremes generally
exceed relative changes in annual mean precipitation, particularly in tropical and subtropical regions.
Consistent with the increased intensity of precipitation extremes, waiting times for late-twentieth-century
extreme precipitation events are reduced almost everywhere, with the exception of a few subtropical
regions. The multimodel multiscenario consensus on the projected change in the globally averaged 20-yr
return values of annual extremes of 24-h precipitation amounts is that there will be an increase of about 6%
with each kelvin of global warming, with the bulk of models simulating values in the range of 4%–10% K�1.
The very large intermodel disagreements in the Tropics suggest that some physical processes associated with
extreme precipitation are not well represented in models. This reduces confidence in the projected changes
in extreme precipitation.

1. Introduction

Human activities and the environment are greatly
affected by climate and weather extremes. A growing
interest in extreme climate events is motivated by the

vulnerability of our society to the impacts of such
events. There is growing evidence suggesting that the
anthropogenic forcing is affecting the present climate
(International Ad Hoc Detection and Attribution
Group 2005) and will continue to do so in the future
(Cubasch et al. 2001). The impacts of the changing cli-
mate will likely be felt most strongly through changes in
intensity and frequency of climate extremes. It is there-
fore important to document future changes that might
be caused by anthropogenic activities.
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Simulations with global coupled ocean–atmosphere
general circulation models (CGCMs) forced with pro-
jected greenhouse gas and aerosol emissions are the
primary tools for studying possible future changes in
climate mean, variability, and extremes. Changes in
rainfall distributions have attracted much attention be-
cause of the particular vulnerability of human activities
to hydrological extreme events such as flood-producing
rains and droughts. The intensity of extreme precipita-
tion is projected to increase under global warming in
many parts of the world, even in the regions where
mean precipitation decreases (e.g., Kharin and Zwiers
2000, 2005; Semenov and Bengtsson 2002; Voss et al.
2002; Wilby and Wigley 2002; Wehner 2004). Future
increases in heavy precipitation are accompanied by
reduction in the probability of wet days, implying a
more extreme future climate with higher probabilities
of droughts and heavy precipitation events.

Changes in temperature extremes tend to follow
mean temperature changes in many parts of the world.
However, Kharin and Zwiers (2000, 2005) reported that
cold temperature extremes warm faster than warm ex-
tremes in mid- and high latitudes, mainly as a result of
snow and sea ice melting in winter under global warm-
ing. Increased temperature variability has been re-
ported in some studies over land in summer (Gregory
and Mitchell 1995; Kharin and Zwiers 2005), implying
potentially larger relative increases in warm extremes
than in mean summertime temperature.

The ability of the recent generation of atmospheric
general circulation models to simulate temperature and
precipitation extremes was recently documented by
Kharin et al. (2005) for models participating in the sec-
ond phase of the Atmospheric Model Intercomparison
Project (AMIP2). The purpose of the present study is
to document the performance of the current generation
of CGCMs in simulating present-day extremes of tem-
perature and precipitation and their potential changes
under different projections for the evolution of the an-
thropogenic forcing, using model output submitted to
the Program for Climate Model Diagnosis and Inter-
comparison (PCMDI; http://www-pcmdi.llnl.gov) in
support of the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4).

The paper is organized as follows. Datasets are de-
scribed in the next section. Extreme value methodology
is summarized in section 3. The ability of the models to
simulate present-day precipitation and temperature ex-
tremes is documented in section 4. Their changes under
several emission scenarios are examined and discussed
in section 5. The paper is concluded by a summary in
section 6.

2. Datasets

The Working Group on Coupled Modeling (WGCM)
of the World Climate Research Program (WCRP) re-
quested that modeling groups submit daily model out-
put for a number of 20-yr time periods to PCMDI in
support of the IPCC AR4. In the present study we
analyze annual extremes of daily maximum and mini-
mum surface air temperature and of 24-h precipitation
amounts for the time period 1981–2000 from simula-
tions of the twentieth-century climate (20C3M), and for
two 20-yr time periods 2046–65 and 2081–2100 from the
Special Report on Emissions Scenarios (SRES) B1,
A1B, and A2 experiments. Figure 1 illustrates the time
evolution of carbon dioxide concentrations and sulfate
aerosol loadings in these three emission scenarios. The
gray shaded areas indicate the 20-yr time periods for
which daily temperature and precipitation output was
available for most of the models.

The B1 emission scenario, also known as the 550-
ppm stabilization experiment, envisions the slowest
growth of anthropogenic greenhouse gas concentra-
tions, followed by the A1B experiment, or the 720-ppm
stabilization experiment, with somewhat more rapid
forcing. Many groups continued these simulations up to
year 2300 with the concentrations held at the year-2100
level, but these stabilizations phases are not considered
in the present study. The fastest growing greenhouse
gas concentrations are specified in the A2 experiment
with roughly 1% per year of CO2 increase in the second
half of the twenty-first century. The CO2 concentra-
tions are similar in the A1B and A2 emission scenarios
up to the middle of the twenty-first century, but the A2
scenario also specifies somewhat greater sulfate aerosol
concentrations, which are thought to have a cooling

FIG. 1. The time evolution of the CO2 concentrations (solid
lines, y axis on the left-hand side) and globally averaged sulfate
aerosol loadings scaled to year 2000 (dashed lines, y axis on the
right-hand side) as prescribed in the IPCC SRES B1, A1B, and
A2 experiments. The gray shaded areas indicate the time periods
analyzed in the present study.
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effect on surface temperature (e.g., Ramanathan et al.
2001).

The CGCMs that we analyzed are listed in Table 1
together with their horizontal grid resolutions and the
number of vertical levels in the corresponding atmo-
spheric components. Spectral atmospheric models are
also characterized by the spectral type and truncation.
Model output was available on a variety of grids with
resolution ranging from 72 � 45 to 320 � 160, with
the median resolution being 128 � 64. The vertical
resolution varies from 12 levels to 56 levels with the
median of 26 levels. Table 1 also lists estimates of equi-
librium climate sensitivities compiled from the PCMDI
IPCC model documentation Web site (http://www-
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_
documentation.php and references therein). Equilib-
rium climate sensitivity is defined as the global surface
air temperature change under CO2 doubling in slab
ocean experiments and ranges from 2.1 K in the Insti-
tute of Numerical Mathematics Coupled Model version
3.0 (INM-CM3.0) and National Center for Atmo-
spheric Research (NCAR) Parallel Climate Model
(PCM) to 4.3 K and larger in the L’Institut Pierre-

Simon Laplace Coupled Model version 4 (IPSL-CM4)
and Model for Interdisciplinary Research on Climate
3.2, high-resolution version [MIROC3.2(hires)]. A
number of modeling groups submitted daily output
from several ensemble members per scenario. These
models will be identified when the results of the ex-
treme value analysis are presented in the next sections.

Daily precipitation and daily temperature output for
all three scenarios was not available for all models
listed in Table 1. Daily model output from the A2 ex-
periment was not available for two models: the God-
dard Institute for Space Studies (GISS) Atmosphere–
Ocean Model (AOM) and the MIROC3.2(hires). Daily
temperature extremes were not available for the
NCAR Community Climate System Model version 3
(CCSM3). Daily temperature output from the NCAR-
PCM model was excluded from the analysis because
daily maximum and minimum temperature extremes
appear to be (erroneously) identical in 1981–2000. In
total, daily model output for years 1981–2000 was avail-
able from 14 models for temperature and from 16 mod-
els for precipitation.

To ensure consistency of the results for all three sce-

TABLE 1. List of IPCC global coupled climate models analyzed in the present study and their horizontal and vertical resolutions.
Model resolution is characterized by the size of a horizontal grid on which model output was available, and by the number of vertical
levels. Spectral models are also characterized by their spectral truncations. Equilibrium climate sensitivity is provided where available.

Model label and
climate sensitivity Resolution Institution and reference

CGCM3.1(T47) 3.6 K 96 � 48 L32 T47 Canadian Centre for Climate Modelling and Analysis
(http://www.cccma.ec.gc.ca/models/cgcm3.shtml)

CGCM3.1(T63) 3.4 K 128 � 64 L32 T63 Canadian Centre for Climate Modelling and Analysis
(http://www.cccma.ec.gc.ca/models/cgcm3.shtml)

CNRM-CM3 n/a 128 � 64 L45 T63 Centre National de Recherche Météorologique, France (Salas-Mélia et al. 2006,
manuscript submitted to Climate Dyn.)

ECHAM5/MPI-OM 3.4 K 192 � 96 L31 T63 Max-Planck-Institut für Meteorologie, Germany (Jungclaus et al. 2006)
ECHO-G 3.2 K 96 � 48 L19 T30 Meteorological Institute of the University of Bonn, Germany, Meteorological

Research Institute, South Korea (Min et al. 2005)
GFDL-CM2.0 2.9 K 144 � 90 L24 Geophysical Fluid Dynamics Laboratory (Delworth et al. 2006; Gnanadesikan

et al. 2006)
GFDL-CM2.1 3.4 K 144 � 90 L24 Geophysical Fluid Dynamics Laboratory (Delworth et al. 2006; Gnanadesikan

et al. 2006)
GISS-AOM n/a 90 � 60 L12 Goddard Institute for Space Studies Laboratory (Russell et al. 1995;

http://aom.giss.nasa.gov)
GISS-ER 2.7 K 72 � 46 L20 Goddard Institute for Space Studies Laboratory (Schmidt et al. 2006;

Russell et al. 2000)
INM-CM3.0 2.1 K 72 � 45 L21 Institute of Numerical Mathematics, Russia (Diansky and Volodin 2002)
IPSL-CM4.0 4.4 K 96 � 72 L19 Institut Pierre-Simon Laplace, France

(http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4)
MIROC3.2(hires) 4.3 K 320 � l60 L56 T106 Center for Climate System Research, Japan (Hasumi and Emori 2004)
MIROC3.2(medres) 4.0 K 128 � 64 L20 T42 Center for Climate System Research, Japan (Hasumi and Emori 2004)
MRI-CGCM2.3.2 3.2 K 128 � 64 L30 T42 Meteorological Research Institute, Japan (Yukimoto et al. 2001, 2006)
NCAR-CCSM3 2.7 K 256 � l28 L26 T85 National Center for Atmospheric Research (Collins et al. 2006)
NCAR-PCM 2.1 K 128 � 64 L26 T42 National Center for Atmospheric Research (Washington et al. 2000; Meehl

et al. 2006)
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narios and to minimize possible effects of different mul-
timodel ensembles on the multimodel mean response,
the analysis of changes in climate extremes is per-
formed only for models for which daily model output
was available for all three emission scenarios. As a re-
sult, analysis of changes in precipitation extremes was
performed for 14 models [all models in Table 1 except
for GISS AOM and MIROC3.2(hires)]. Changes in
temperature extremes are analyzed for 12 models (ex-
cluding also NCAR-CCSM3 and NCAR-PCM). For
completeness, the analysis was repeated for all avail-
able models, but the conclusions of the study remained
essentially unaffected.

Several diagnostics describing simulated 1981–2000
climate extremes are compared to those derived from
four reanalyses. The two older reanalyses are the Na-
tional Centers for Environmental Prediction (NCEP)–
NCAR reanalysis (Kalnay et al. 1996) denoted hereaf-
ter as NCEP1, and the 15-yr European Centre for Me-
dium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-15: Gibson et al. 1997). The two more
recent ones are the NCEP–Department of Energy
(DOE) AMIP-II reanalysis (Kanamitsu et al. 2002), de-
noted as NCEP2, and 40-yr ECMWF Re-Analysis
(ERA-40; Simmons and Gibson 2000). We also per-
formed an analysis of annual extremes of nonoverlap-
ping 5-day mean precipitation rates (pentads), and used
for verification the Climate Prediction Center (CPC)
Merged Analysis of Precipitation (CMAP) pentad
dataset that is a blend of gauge observations, satellite
observations, and precipitation fields from the NCEP–
NCAR reanalysis (Xie et al. 2003). These are essen-
tially the same validation sources that are used in the
recent atmospheric model intercomparison study by
Kharin et al. (2005) but updated for the 1981–2000 pe-
riod whenever possible.

3. Methodology

Climate extremes are multifaceted meteorological
phenomena and can be characterized in terms of inten-
sity, frequency, or duration of one or more climatologi-
cal parameters. To address the multitude of possible
extreme value statistics, the WCRP/WGCM also re-
quested that modeling groups submit a number of ex-
tremes indices, as described in Frich et al. (2002). These
indices are not analyzed here but are the subject of
several other diagnostic subprojects (http://www-
pcmdi.llnl.gov/ipcc/diagnostic_subprojects.php; e.g.,
Tebaldi et al. 2006).

Here we follow the approach of Zwiers and Kharin
(1998), Kharin and Zwiers (2000), and Kharin et al.
(2005) and analyze extremes of surface air temperature
and precipitation in terms of return values, or return

levels, of their annual extremes. Note that there seems
to be no universally agreed definition of return values.
A conventional but somewhat loose definition of a T-
year return level as the level that is exceeded on aver-
age every T years is problematic in a nonstationary en-
vironment. We more precisely define a T-year return
value as the threshold that is exceeded by an annual
extreme in any given year with the probability p � 1/T,
where T is expressed in years. In particular, a 20-yr
return value is the level that an annual extreme exceeds
with probability p � 5%. The quantity T � 1/p indicates
the “rarity” of an extreme event and is usually referred
to as the return period, or the waiting time for an ex-
treme event.

Return values defined as above are essentially the
quantiles of a distribution of annual extremes and are
estimated from a generalized extreme value (GEV) dis-
tribution fitted at every grid point to samples of annual
temperature and precipitation extremes. The “three
type” GEV distribution comprises the three classical
asymptotic extreme value models, Gumbel, Frèchet,
and Weibull (Jenkinson 1955). Its three parameters, lo-
cation, scale, and shape, are estimated by the robust
method of “L-moments” (Hosking 1990, 1992), also
known as the method of probability-weighted mo-
ments, with the minor modification of Dupuis and Tsao
(1998) to ensure the feasibility of the parameter esti-
mates (i.e., to ensure that all observed or simulated
annual extremes are in fact permitted by the estimated
GEV distribution). This method of return value esti-
mation is well documented in the aforementioned stud-
ies and is therefore not presented here.

We note that the GEV distribution theory is valid
only asymptotically, that is, when extremes are drawn
from increasingly larger samples. In the present study,
annual extremes are drawn from samples of size 365 (or
366 for leap years). However, serial correlation and the
presence of an annual cycle may substantially reduce
the effective sample size. Therefore, it is imperative to
evaluate whether the asymptotic GEV distribution pro-
vides a reasonable description of the behavior of a
sample of observed annual extremes by performing
goodness-of-fit tests. We routinely conduct standard
Kolmogorov–Smirnov goodness-of-fit tests (Stephens
1970) that measure the overall difference between the
empirical and fitted cumulative distributions for all
available samples. These tests indicate that a GEV dis-
tribution is generally a reasonable approximation for a
distribution of annual extremes of the considered vari-
ables in most models. The goodness-of-fit is diminished
for annual precipitation extremes in extremely dry re-
gions in some models, most notably in IPSL-CM4.0.
The GEV fit is also somewhat problematic for annual
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precipitation extremes in the Tropics in both GFDL
models. Tropical annual precipitation extremes in these
two models exhibit a somewhat intermittent behavior
when more moderate annual extremes in some years
are alternated with very large values in other years. As
an additional check, we routinely estimate empirical
quantiles of annual extremes for moderate return peri-
ods and compare them to the corresponding L-moment
return value estimates. In most cases regionally aver-
aged empirical and parametric return value estimates
compare reasonably well and are not overly too differ-
ent even in situations where a GEV fit appears to be
problematic.

The choice of the L-moment method over the fre-
quently used method of maximum likelihood for esti-
mating the parameters of a GEV distribution is primar-
ily dictated by relatively short 20-yr samples as are
available for analysis. The standard maximum likeli-
hood estimator is less efficient than the L-moment es-
timator in short samples for typical values of the shape
parameter (Hosking et al. 1985). Coles and Dixon
(1999) argue that this is mainly due to unreliable esti-
mates of the shape parameter that translates to poor
performance for return values. There have been efforts
to improve the efficiency of the maximum likelihood
estimator. For example, Martins and Stedinger (2000)
propose a generalized maximum likelihood analysis by
specifying a geophysical prior distribution to restrict the
shape parameter to a physically plausible interval
within a Bayesian framework. Coles and Dixon (1999)
modify the likelihood function by introducing a penalty
term to restrict the shape parameter values to the range
for which the GEV distribution has finite mean. Both
approaches require user decisions about the specifica-
tion of the prior distribution or the weight and form of
the penalty term. The benefits of these, more general
and potentially more powerful but also somewhat more
complex techniques, do not override, in our opinion,
the simplicity of the L-moment method in the present
setting.

A potential drawback of the L-moment method in a
transient climate change setting is that it assumes the
stationarity of annual extremes. Kharin and Zwiers
(2005) demonstrated that the violation of this assump-
tion may introduce bias in return value estimates that is
comparable to sampling variance. Their finding was
based on three-member ensemble simulations with a
single CGCM, but its significance is diminished for the
present multimodel study. First, as will be demon-
strated further on, sampling errors in local return value
estimates for moderate return periods are generally
smaller than discrepancies between individual models
and therefore do not represent the main source of un-

certainty. Second, the bias is minor as compared to
sampling variance when return values are estimated
from short 20-yr samples from a single realization that
are available for the majority of models in the present
study. Third, the short sample size prohibits the use of
more complex statistical models with time-varying
GEV distribution parameters, as was done by Kharin
and Zwiers (2005). Such models can be fitted with the
maximum likelihood method but are less competitive
than models with constant parameters in short samples.
Any benefits that might be gained in reducing the bias
by employing a more complex statistical model are
likely to be offset by increased sampling variance.
Overall, the L-moment method appears to be an ap-
propriate and viable technique for the task in the
present setting.

Alternatives to the annual extremes approach in-
clude peak-over-threshold techniques based on a gen-
eralized Pareto distribution, and r-largest extremes
analysis with a GEV distribution (e.g., Palutikof et al.
1999; Zhang et al. 2004). Successful implementation of
these methods generally requires more decisions from
the user (e.g., declustering of extremes, specification of
a sufficiently large threshold, dealing with the annual
cycle, etc.). Thus applying these techniques in an auto-
mated manner in a multimodel ensemble setting across
a variety of very different climatological zones is a
rather difficult task. The main argument for using one
of these alternative techniques is that they may use the
available information more efficiently, which could po-
tentially result in more accurate return value estimates.
However, as will be demonstrated further on, sampling
errors are not the main source of uncertainty in the
multimodel/multiscenario setting. We therefore do not
consider the use of other methods in the present study.

Most of the analysis that follows is performed for the
return period of 20 yr, or equivalently, for the exceed-
ance probability by annual extremes of 5%. Longer
return periods, such as 50 yr (exceedance probability of
2%), or even 100 yr (exceedance probability of 1%),
are less advisable given the relatively short 20-yr
samples and considering the fact that only one climate
simulation was available for each emission scenario for
most models. Estimating return levels for very long re-
turn periods is prone to larger sampling errors and po-
tentially larger biases due to inexact knowledge of the
shape of the tails of a distribution of annual extremes.

The GEV distribution methodology also allows us to
examine changes in the exceedance probability of
events of a certain size. In particular, we examine pro-
jected changes in the exceedance probability p of late-
twentieth-century 20-yr return levels and express these
changes in terms of changes in waiting times T � 1/p.
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For example, we anticipate that late-twentieth-century
warm extremes will generally be exceeded more fre-
quently in a warmer climate, and therefore their wait-
ing times will decrease, while waiting times for occur-
rences of late-twentieth-century cold extremes will in-
crease.

Return values of cold and warm annual temperature
extremes, and of annual 24-h precipitation extremes,
are estimated for each model on its native grid. The
resulting statistics are then interpolated onto a common
256 � 128 Gaussian grid for averaging and intercom-
parison purposes. Regionally averaged extreme value
statistics are evaluated for a number of extratropical,
subtropical, and tropical zonal bands, and also the con-
tinental regions displayed in Fig. 2 and defined in Table
2. The purpose of spatial averaging in the present study
is twofold: 1) to reduce sampling errors and perhaps
reduce some uncertainties associated with modeling er-
rors at local scales and 2) to provide a condensed sum-
mary of typical and regionally representative ampli-
tudes of extreme events, their uncertainties, and pos-
sible future changes.

There are no known analytical expressions for calcu-
lating standard errors and confidence intervals of the
L-moment estimates, similar to those available for the
maximum-likelihood estimates. We therefore use the
nonparametric bootstrap (Efron and Tibshirani 1993),
a resampling technique that allows us to estimate the
uncertainties in return values that result from in-sample
variability. For each model or observational dataset,
1000 bootstrap samples are generated by randomly
sampling with replacement global fields of annual ex-
tremes from the original dataset. Global fields are re-
sampled to preserve possible spatial dependencies.
Local return values and their regional averages are
calculated for each bootstrap sample. The resulting col-
lection of 1000 resampled statistics is used to derive
bootstrap confidence intervals.

The L-moment return value estimates based on short

samples are slightly biased, even when the stationarity
assumption is satisfied (Hosking et al. 1985). The bias is
generally negligible when compared to standard errors
of local estimates but becomes noticeable when local
estimates are averaged over large regions so that sam-
pling variance is greatly reduced. As a result, the boot-
strap distribution of regionally averaged return values
is not centered at the return value estimate obtained for
the original sample. In the following we corrected re-
gionally averaged return values for the bootstrap esti-
mate of bias, defined as the mean of resampled statistics
minus the statistic for the original sample, when pre-
senting regionally averaged statistics.

4. Simulated late-twentieth-century climate
extremes

We start the analysis of temperature and precipita-
tion extremes by documenting their present-day clima-
tologies. For space reasons, we are not able to display
individual maps of extremes for each of the models
analyzed in this study. Instead we limit the presentation
by showing zonally and regionally averaged statistics
simulated by individual models, together with maps of
the multimodel ensemble mean and a measure of the
discrepancy between models expressed in terms of the
standard deviation about the multimodel mean.

a. Temperature extremes

Zonally averaged 20-yr return values of 1981–2000
annual warm and cold extremes simulated by 14 IPCC

FIG. 2. Continent-wide regions and zonal bands considered in
the present study. The coordinates of the regions are given in
Table 2.

TABLE 2. Coordinates of continental-scale regions, as described
in Fig. 2.

Region Label Latitudes Longitudes

Global scale

Globe GLB 180° to 180° 90°S–90°N
Land LND 180° to 180° 90°S–90°N

Zonal bands

NH extratropics NHE 180° to 180° 35°–90°N
SH extratropics SHE 180° to 180° 90°–35°S
Tropics TRO 180° to 180° 10°S–10°N
NH subtropics NTR 180° to 180° 10°–35°N
SH subtropics STR 180° to 180° 35°–10°S

Subcontinents

Africa AFR 20°W–60°E 40°S–30°N
Central Asia ASI 45°E–180° 30°–65°N
Australia AUS 105°E–180° 45°–10°S
Europe EUR 20°W–45°E 30°–65°N
North America NAM 165°–30°W 25°–65°N
South America SAM 115°–30°W 55°S–25°N
South Asia SAS 60°–160°E 10°S–30°N
Arctic ARC 180° to 180° 65°–90°N
Antarctic ANT 180° to 180° 90°–65°S
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models over land and the corresponding estimates from
the NCEP2 and ERA-40 reanalyses are displayed in
Fig. 3 (top). The model results are represented by col-
ored curves, one curve for each ensemble member if
there is more than one ensemble realization. The en-
semble size is indicated in brackets after the model

name in the legends. In principle, all ensemble mem-
bers could have been concatenated together into one
longer sample from which more accurate estimates of
return values could have been obtained. Here, we plot-
ted the return values for each ensemble member sepa-
rately to get an idea of the uncertainty that arises due to

FIG. 3. (top) Zonally averaged 1981–2000 Tmax,20 and Tmin,20 as simulated over land by 14 IPCC AR4 models.
Several models are represented by several climate simulations, one curve for each ensemble member. The en-
semble size is indicated in brackets after the model labels. The NCEP2 and ERA-40 estimates are displayed in
black together with the 95% bootstrap confidence intervals in gray. (middle) The difference between zonally
averaged 1981–2000 temperature extremes Tmax,20 and Tmin,20 and the corresponding extremes of the annual cycle
max T ac

max and min T ac
min. (bottom) Boxplots of regionally averaged 1981–2000 Tmax,20, Tmin,20, max T ac

max, and min
T ac

min. Boxplots indicate the central 50% intermodel range, the median, and the lower and upper bounds. The
downward- and upward-pointing triangles represent the regionally averaged statistics estimated from NCEP2 and
ERA-40, respectively.
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the interannual variability of annual extremes in 20-yr
samples, as compared to model-to-model differences.
The NCEP2 and ERA-40 reanalyses are represented by
the black solid line and dashed line curves, respectively.
We also display in gray the 95% bootstrap confidence
intervals for the zonally averaged estimates of 20-yr
return values for the two reanalyses.

Sampling errors do not appear to play a significant
role in the uncertainty of zonally averaged estimates of
20-yr return values. The corresponding bootstrap con-
fidence intervals are very narrow in comparison to the
differences between individual models or reanalyses
(the width of the confidence intervals in Fig. 3 is only
marginally larger than the thickness of the curves). This
is also supported by the fact that the curves obtained
for individual ensemble members lay nearly on top of
each other for models with more than one realization.
The latter indicates that sampling errors are generally
small and that possible natural variability on decadal
and longer time scales has only a small effect on the
amplitude of return values, at least for the zonally av-
eraged return value statistics in the models considered.

The two reanalyses agree fairly well on the magni-
tude of zonally averaged warm extremes. The NCEP2
warm extremes tend to be only slightly warmer than the
corresponding ERA-40 extremes over landmasses.
However, NCEP2 cold extremes are much colder than
their ERA-40 counterparts in many regions, by as much
as 15°C and more, and are colder than those simulated
by the majority of the models. Note that the ERA-40
temperature extremes are derived from data that are
sampled every 6 h (4 times daily). Kharin et al. (2005)
found that this coarser temporal resolution does not
seriously compromise the accuracy of return values of
annual temperature extremes. In particular, zonally av-
eraged 20-yr return values of NCEP2 annual tempera-
ture extremes calculated from 6-hourly sampled data
(not shown here) nearly coincide with the estimates
based on the original diurnal temperature extremes.
The discrepancies between the reanalyses are therefore
unlikely to be due to the difference in temporal reso-
lution of two datasets.

Similar to the AMIP2 study (Kharin et al. 2005), cold
extremes are generally less reliably simulated by the
models than warm extremes. The discrepancies be-
tween the models (and between the reanalyses) are
generally larger for cold extremes than for warm ex-
tremes. However, there are some exceptions. In par-
ticular, there is a substantial warm bias in the warm
extremes in subtropical regions in the Model for Inter-
disciplinary Research on Climate 3.2, medium-
resolution version [MIROC3.2(medres)], and to a
lesser degree in MIROC3.2(hires) and Canadian Cen-

tre for Climate Modelling and Analysis (CCCMA)
CGCM3.1. There is also a large cold bias over Antarc-
tica in the Meteorological Research Institute (MRI)
CGCM2.3.2 model.

Some, but not all, of the biases can be attributed to
differences in the model climatologies. Since warm and
cold extremes tend to occur during the time of year
when mean temperatures are the warmest or coldest,
respectively, we examine the differences between warm
and cold extremes relative to the respective warm or
cold climatological mean temperatures. The middle
panel of Fig. 3 displays the difference between the zon-
ally averaged warm and cold extremes displayed in the
upper panel, and the corresponding maximum and
minimum of the climatological annual cycle, denoted as
max Tac

max and min Tac
min., respectively. The annual cycle

is defined as the 1981–2000 average of monthly Tmax or
Tmin for each calendar month. The magnitude of devia-
tions from zero indicates the extent to which tempera-
ture extremes deviate from the mean temperature con-
ditions in individual models and reanalyses.

There is better agreement between models and re-
analyses with respect to such deviations for warm ex-
tremes than for cold extremes, except for MIROC3.2 in
subtropical regions. Differences among models and re-
analyses are largest over snow and sea ice–covered re-
gions. Most notably, temperature occasionally deviates
farther below the climatological mean temperature in
NCEP2 as compared to ERA-40 or most models. The
NCEP2 reanalysis (and the older NCEP1 reanalysis;
not shown here) is somewhat exceptional in this regard
(Kharin et al. 2005).

A boxplot summary of regionally averaged cold and
warm extremes is displayed in the bottom panel of Fig.
3. The regions are defined in Table 2 and displayed in
Fig. 2. Boxplots indicate the central 50% intermodel
range (25th–75th percentiles), the median, and the
lower and upper bounds in the multimodel ensemble.
Generally speaking, simulated warm extremes compare
well with the reanalyses on the considered regional
scales, although the models have a tendency for a warm
bias in tropical and subtropical regions in the models.
Consistent with the findings above, regional differences
are larger for cold extremes, both among the models
and among the two reanalyses.

Figure 4 displays the multimodel ensemble mean of
warm and cold extremes, and the differences between
the ensemble mean extremes and the corresponding
temperature extremes in NCEP2 and ERA-40. Warm
extremes tend to be slightly colder in the models, on
average, than in the reanalyses over oceans in the
Northern Hemisphere but slightly warmer over South
and Central America, North Africa, the Middle East,
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and Central Asia. Cold extremes are well simulated
over ice free oceans, as compared to the reanalyses but,
as noted previously, NCEP2 cold extremes are more
severe over land and sea-ice-covered regions than in
the models and in ERA-40.

Globally and land-only averaged statistics are sum-
marized in Table 3. The multimodel mean of globally
averaged simulated 1981–2000 warm extremes corre-
sponds closely to that in NCEP2 and ERA-40. The mul-
timodel mean of globally averaged cold extremes is

FIG. 4. (top) The multimodel ensemble mean average of 20-yr return values of 1981–2000 (left) annual maximum temperature
(Tmax,20) and (right) annual minimum temperature (Tmin,20) as simulated by 14 IPCC AR4 models. (middle) The difference between
the multimodel ensemble means of Tmax,20 and Tmin,20 and the corresponding temperature extremes estimated from NCEP2. (bottom)
The difference between the multimodel ensemble mean of Tmax,20 and Tmin,20 and the corresponding extremes estimated from ERA-40.
Units are °C. Global averages are indicated in the titles.
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warmer than in NCEP2 but colder than in ERA-40.
The discrepancies amongst the models and reanalyses
are substantially smaller for warm and cold mean tem-
peratures than for extreme temperatures.

Figure 5 summarizes intermodel differences of local
20-yr return value estimates and the estimated return
value sampling standard errors. The upper two panels
display the intermodel standard deviation of simulated
warm and cold extremes. Model differences are larger

over land and sea ice than over ice free oceans and are
generally larger for cold extremes than for warm ex-
tremes, particularly over snow-covered regions. The
bottom two panels display the estimate of sampling
standard errors of local 20-yr return values obtained as
the multimodel average of standard deviations of 1000
bootstrap resamples obtained for each model. Sampling
errors are generally larger for cold extremes than for
warm extremes due to generally larger interannual vari-

FIG. 5. (top) The intermodel standard deviation of 1981–2000 (left) Tmax,20 and (right) Tmin,20 as simulated by 14 IPCC AR4 models.
(bottom) The multimodel ensemble mean of the bootstrap sampling standard errors of local (left) Tmax,20 and (right) Tmin,20. Units are
°C. Global averages are indicated in the titles.

TABLE 3. The multimodel ensemble mean average of 20-yr return values of annual maximum and minimum temperature (Tmax,20 and
Tmin,20) and the corresponding maximum and minimum of the annual cycle, max T ac

max and min T ac
min, averaged over the globe and land

only as simulated by 14 IPCC AR4 models in 1981–2000 in the twentieth-century experiment (20C3M) and in the NCEP2 and ERA-40
reanalyses. The central 50% intermodel range is displayed to the right of the ensemble mean value.

Tmax,20 (°C) Tmin,20 (°C) maxT ac
max (°C) maxT ac

min (°C)

Globe Land Globe Land Globe Land Globe Land

20C3M 26.026.8
25.3 33.235.2

31.7 �0.9�0.4
�2.5 �18.7�15.6

�22.8 21.521.8
21.0 24.525.3

23.7 6.67.4
5.8 �6.0�4.7

�7.5

NCEP2 26.3 33.1 �2.9 �24.3 21.7 23.7 7.3 �5.5
ERA-40 26.2 31.6 0.4 �15.8 21.6 23.8 7.8 �3.9

1428 J O U R N A L O F C L I M A T E VOLUME 20

Fig 5 live 4/C



ability of cold temperatures. However, sampling errors
constitute only a small fraction of the total uncertainty
in local estimates of temperature extremes.

b. Precipitation extremes

The upper two panels of Fig. 6 display zonally aver-
aged 20-yr return values of 1981–2000 annual extremes
of 24-h precipitation amounts (P20) and of nonoverlap-
ping 5-day mean precipitation rates (P5

20) as simulated
by 16 IPCC AR4 models and estimated from reanalyses
and CMAP. The precipitation extremes are fairly con-
sistently simulated in the moderate and high latitudes
but much less so in the Tropics and subtropical regions.
With the exception of the older NCEP1 reanalysis, the
amplitude of precipitation extremes in other reanalyses
in the Tropics is larger, zonally averaged, than in any of
the models. Kharin et al. (2005) speculated that the
weak tropical precipitation extremes in NCEP1 are per-
haps not very trustworthy due to a known “spinup”
deficiency for convection in the forecast model in that
reanalysis.

The differences between simulated 5-day extremes
are somewhat smaller than those between daily ex-
tremes but are still very large in tropical regions. The
CMAP 5-day extremes are more moderate than those
in the more recent reanalyses. Coincidently, the multi-
model ensemble mean of 5-day precipitation extremes
is closer to the CMAP extremes than to those estimated
from any of the reanalyses. The 20-yr return values of
annual 5-day precipitation extremes appear somewhat
problematic in the CMAP dataset over Antarctica. The
very large return value estimates are mainly caused by
exceptionally large annual extremes in a single year,
1987, that are well in excess of 80 mm day–1 in some
Antarctic regions, which perhaps points toward some
extrapolation or other postprocessing problems associ-
ated with Antarctica’s sparse observational network.

A number of models are represented by several
curves in Fig. 6, one for each ensemble member. The
ensemble size is indicated in brackets after the model
label in the legends. We also show the 95% bootstrap
confidence intervals derived from the observational
datasets. It is evident that the differences in zonally
averaged extremes between individual model realiza-
tions performed with the same model are generally
much smaller than the differences between different
models. The bootstrap confidence intervals that char-
acterize sampling variability of zonally averaged 20-yr
return values are also relatively narrow, as compared to
the intermodel differences. The very wide confidence
interval for the CMAP extremes over Antarctica is due
to the aforementioned peculiarity in this dataset.

The bottom panel of Fig. 6 displays a boxplot sum-

mary of regionally averaged 24-h (in red) and 5-day (in
blue) precipitation extremes plotted on a log scale.
Symbols to the right of the boxplots indicate the cor-
responding regional statistics estimated from observa-
tionally based datasets. The height of the symbols cor-
responds to the 95% bootstrap confidence intervals of
the regionally averaged observational estimates. In
most cases, sampling errors of regionally averaged ex-
tremes are small compared to the corresponding inter-
model differences. Not unexpectedly, model-to-model
discrepancies (as indicated by the central 50% inter-
model range) are generally smaller for 5-day precipita-
tion extremes than for daily precipitation extremes.
The intermodel uncertainties are relatively small for
regions located well outside of the Tropics, such as Eu-
rope (EUR), North America (NAM), or North and
Central Asia (ASI) but are much larger for tropical
regions.

Multimodel mean P20 is displayed in the upper-left
panel of Fig. 7, and the ratio of the multimodel mean
extreme precipitation over that in ERA-40 is shown the
upper-right panel. The ensemble mean amplitude of
20-yr return values of annual precipitation extremes is
comparable to that in ERA-40 in the extratropics
where departures from ERA-40 are generally within
the �20% range. The models simulate, on average,
more intense precipitation extremes in the generally
very dry regions of northern Africa and off the sub-
tropical west coasts of Africa and North and South
America. However, they simulate much weaker ex-
tremes in the narrow band along the equator. Similar
features are present when the ensemble mean extreme
precipitation is compared to NCEP2 (not shown), ex-
cept that the maximum of tropical extreme precipita-
tion in NCEP2 is broader than in ERA-40. Some re-
gional statistics are summarized in Table 4.

The lower two panels of Fig. 7 display the magnitude
of intermodel differences and the typical amplitude of
sampling errors of P20 estimates derived from 20-yr
samples. The estimated intermodel standard deviation
of P20 displayed in the lower-left panel is normalized by
the ensemble mean P20 There is better agreement be-
tween models in midlatitudes where intermodel stan-
dard deviations are about 20% of the ensemble mean
amplitude. Differences amongst the simulated precipi-
tation extremes are much larger in the Tropics and sub-
tropical regions where they become comparable to the
ensemble mean in some regions. The bootstrap sam-
pling standard errors obtained for individual models for
1981–2000 are also normalized by the respective esti-
mates of P20. The lower-right panel of Fig. 7 shows the
ensemble mean of such normalized standard errors,
which are typically smaller than 10% in midlatitudes
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and are slightly larger in tropical and polar regions.
Overall, sampling variance is generally only a small
fraction of total intermodel variability.

As in Kharin et al. (2005), the dependence of the

magnitude of precipitation extremes on the spatial
resolution in different models is found to be weak. In
the extratropics, there is some evidence of somewhat
stronger precipitation extremes in models with higher

FIG. 6. Zonally averaged 20-yr return values of 1981–2000 annual extremes of (top) 24-h precipitation rates (P20)
and (middle) nonoverlapping 5-day mean precipitation rates (P5

20) as simulated by 16 IPCC AR4 models plotted
on a log scale. Units are mm day�1. Some models are represented by several ensemble members, one curve for
each ensemble member. The ensemble size is indicated in brackets after the model labels. Precipitation extremes
estimated from the reanalyses and CMAP pentad dataset are displayed in black together with the 95% bootstrap
confidence intervals in gray. (bottom) Boxplots of simulated regionally averaged 1981–2000 P20 and P5

20. Symbols
to the right of the boxplots indicate the corresponding statistics estimated from the reanalyses and CMAP pentad
dataset. The height of the symbols corresponds to the 95% bootstrap confidence interval of the corresponding
regional means.
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horizontal resolution. For example, the weakest extra-
tropical extremes are simulated in the lower-resolution
models, GISS-ER and GISS-AOM, while the strongest
extremes are simulated in MIROC3.2(hires), which has
the highest spatial resolution. The amplitude of ex-
tremes increases with resolution in simulations per-
formed with models from the same modeling group.

For example, the amplitude of precipitation extremes
is about 15% larger, on average, in the simulation
performed with the higher-resolution model
CGCM3.1(T63), as compared to the lower-resolution
version CGCM3.1(T47). A more dramatic increase in
spatial resolution from T42 L20 in MIROC3.2(medres)
to T106 L56 in MIROC3.2(hires) is accompanied by a

TABLE 4. The multimodel ensemble mean and the central 50% intermodel range of 20-yr return values of annual extremes of daily
precipitation P20 (mm day�1) and 5-day precipitation P5

20 (mm day�1) averaged over the globe, land, the extratropical Northern
Hemisphere (NHE; 35°–90°N), and the Tropics (TRO; 10°S–10°N) as simulated by 16 IPCC AR4 models in 1981–2000 in the
twentieth-century experiment and the corresponding estimates from the NCEP2 and ERA-40 reanalyses and CMAP dataset.

P20 (mm day�1) P5
20 (mm day�1)

Globe Land NHE TRO Globe Land NHE TRO

20C3M 51.964.7
40.6 43.152.1

31.5 38.342.2
33.9 70.5100.1

46.1 21.425.0
19.0 17.320.0

14.8 13.814.6
12.8 33.845.0

26.8

NCEP2 82.9 66.8 46.5 155.8 31.3 25.1 16.7 58.6
ERA-40 77.8 56.4 38.7 184.6 29.6 20.5 13.3 75.8
CMAP — — — — 24.1 18.5 13.3 37.0

FIG. 7. (top left) The multimodel ensemble mean of 20-yr return values of 1981–2000 annual extremes of daily precipitation (mm
day�1) as simulated by 16 IPCC AR4 models. (top right) The ratio of the multimodel ensemble mean of P20 estimates over P20

estimated from ERA-40. (bottom left) The intermodel standard deviation of P20 estimates divided by their multimodel ensemble mean.
(bottom right) The multimodel ensemble mean of the ratios of the bootstrap sampling standard deviations over the corresponding
1981–2000 P20 estimates for individual models. Global averages are indicated in the titles.
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larger increase in extreme precipitation amplitude of
about 40%.

On the other hand, models developed by different
modeling groups do not necessarily confirm this ten-
dency. A typical example is given by the reanalyses.
Extratropical precipitation extremes are about 20%
stronger in NCEP2 than in ERA-40 although the atmo-
spheric component of NCEP2 has lower resolution
(T62 L28) than ERA-40 (T159 L60). Note, however,
that ERA-40 data were available on a lower-resolution
144 � 73 regular grid that was obtained by a bilinear
interpolation from its higher-resolution “reduced”
Gaussian 320 � 160 grid. This reduction in resolution is
unlikely to explain the differences between the two re-
analyses. We verified this by bilinearly interpolating
NCEP2 precipitation from the 192 � 94 NCEP2 grid
onto the 144 � 73 ERA-40 grid; return values were
reduced just by a few percent.

Overall, it does appear that the amplitude of extreme
precipitation increases with resolution, particularly, in
models with similar representations of dynamical and
physical processes. However, this dependence is not
very robust across different models. In particular, there
is no statistically significant dependence of precipita-
tion extremes on the model resolution simulated by
different models in the Tropics where the details of the
deep convection parameterizations seem to be of dom-
inant importance at the spatial resolutions considered
(Scinocca and McFarlane 2004).

Figure 8 offers an alternative way to summarize the
degree of disagreement between the models in simulat-
ing extreme precipitation in the Tropics and extratro-
pics. It shows the empirical cumulative distribution
functions of the regional estimates of 10-, 20-, and 50-yr
return values of annual 24-h precipitation extremes in
the northern extratropics (35°–90°N, left-hand dia-
gram) and Tropics (10°S–10°N, right-hand diagram)
simulated by 16 models. The empirical cumulative dis-
tribution function of x is defined as the fraction of mod-
els that simulate return values less than, or equal to, x.
The multimodel cumulative distributions of return val-
ues for different return periods are better separated in
the extratropics than in the Tropics, indicating better
intermodel consensus on the exceedance probability of
a specified level in the extratropics than in the Tropics.
However, the overlap between the distributions is still
fairly large, even in the extratropics, indicating that the
exceedance probability of specified precipitation events
is presently not very reliably determined by the models.

5. Future changes in extreme values

In this section we document future changes in tem-
perature and precipitation extremes as simulated by the
IPCC AR4 multimodel ensemble. A particular aspect
of this analysis is that we compare changes in extremes
to the corresponding changes in time mean climatolo-
gies. Some previous studies (e.g., Kharin and Zwiers

FIG. 8. Empirical cumulative distribution functions of regional estimates of 10-, 20-, and 50-yr return values of
annual precipitation extremes averaged over (left) the northern extratropics (35°–90°�) and (right) the Tropics
(10°S–10°�) as simulated by 16 IPCC AR4 models in 1981–2000 in the twentieth-century experiments. The x axis
is on a log scale. The vertical dashed lines indicate the multimodel ensemble median values. Models are indicated
by numbers as 1: CCCMA CGCM3.1/T47, 2: CCCMA CGCM3.1/T63, 3: Centre National de Recherches
Météorologiques Coupled Global Climate Model version 3 (CNRM CM3), 4: ECHAM and the global Hamburg
Ocean Primitive Equation (ECHO G), 5: Geophysical Fluid Dynamics Laboratory Climate Model version 2.0
(GFDL CM2.0), 6: GFDL CM2.1, 7: GISS AOM, 8: GISS ER, 9: INM CM3.0, 10: IPSL CM4, 11:
MIROC3.2(hires), 12: MIROC3.2(medres), 13: Max Planck Institute (MPI) ECHAM5, 14: MRI CGCM2.3.2, 15:
NCAR CCSM3, and 16: NCAR PCM1.
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2005) indicate that changes in return values of simu-
lated temperature extremes on a global scale are mainly
associated with changes in the location of the distribu-
tion of annual extremes. Here, we compare changes in
warm and cold temperature extremes to the corre-
sponding changes in the maxima and minima of the
annual cycle, that is, to changes in mean temperatures
of the climatologically warmest and coldest seasons, re-
spectively. Relative changes in extreme precipitation
are compared to changes in annual mean precipitation.

Simulated changes in years 2046–65 and 2081–2100
are calculated relative to the 1981–2000 baseline pe-
riod. To evaluate the statistical significance of changes
in the multimodel ensemble, the climate change
anomalies obtained for individual models are treated as
a sample of random and independent realizations from
a “population of models.” We then performed two
types of statistical tests: the Student’s t test and its non-
parametric alternative, the Wilcoxon signed–rank test
(Wilcoxon 1945) that does not require assumptions
about the form of the distribution. Both tests produced
very similar results. Results on statistical significance
presented below are based on the Wilcoxon test per-
formed at the 10% significance level. Note that these
statistical tests account both for sampling uncertainties
of the extreme value statistics and for intermodel un-
certainties.

a. Changes in temperature extremes

Figure 9 displays multimodel mean differences be-
tween 2046–65 and 1981–2000 20-yr return values of
annual warm and cold extremes as simulated by the
IPCC AR4 models in the SRES A1B experiment. The
upper panels show absolute changes in Tmax,20 and
Tmin,20. The middle panels display changes in extreme
temperatures relative to the corresponding changes in
the maxima and minima of the annual cycle, that is,
�(Tmax,20– maxTac

max) and �(Tmin,20– minTac
min). Positive

values in these diagrams indicate that changes in ex-
treme warm or cold temperatures exceed changes in the
corresponding mean temperature of the warmest or
coldest month of the year. The bottom two panels dis-
play the estimated probability in 2046–65 of exceeding
the late-twentieth-century 20-yr return levels of annual
warm and cold temperature extremes expressed in
terms of waiting times. Only those changes that are
significant at the 10% significance level according to
the nonparametric Wilcoxon test are displayed in color.

Changes in warm and cold extremes are comparable
over ice free oceans. The models tend to simulate some-
what larger increases in warm extremes than in cold
extremes over subtropical land regions, most notably
over the Iberian Peninsula and North Africa but also in

South Africa, southwestern Australia, Central America,
and central South America (Fig. 10). These are regions
that become generally drier. Larger increases in warm
extremes are presumably attributed to reduced mod-
eration by evaporative cooling from the land surface.
Cold extremes warm significantly faster over extratro-
pical landmasses and over high-latitude oceans. The en-
hanced warming of cold extremes is apparently attrib-
uted to the positive snow and sea ice albedo feedback
effect in these regions (see also, e.g., Zwiers and Kharin
1998; Kharin and Zwiers 2000, 2005). It is also evident
that changes in warm extremes closely follow changes
in the mean summertime temperature virtually every-
where over the globe. Globally averaged, warm ex-
tremes increase only a few hundredths of a degree Cel-
sius more than the mean temperature in the climato-
logically warmest month. On the other hand, changes in
cold extremes substantially exceed changes in the mean
temperature in the climatologically coldest month in
regions where snow and sea ice retreat with global
warming.

Not surprisingly, there are substantial projected
changes in the exceedance probability of warm and cold
events that are considered as extreme at the end of the
twentieth century. In particular, the exceedance prob-
ability of 20-yr return values of 1981–2000 annual warm
extremes doubles in high latitudes and more than
triples in more moderate latitudes over land (i.e., wait-
ing times are reduced by a factor of 2–4). Late-
twentieth-century warm extremes are exceeded virtu-
ally every year in 2046–65 in the lower latitudes. On the
other hand, late-twentieth-century cold extremes be-
come less frequent and are practically never exceeded
over most of the globe by the middle of the twenty-first
century under the A1B forcing scenario.

Figure 11 displays the multimodel mean changes in
zonally averaged Tmax,20 and Tmin,20 as simulated with
the B1 (blue curves), A1B (green curves), and A2 (red
curves) emission scenarios. The 2046–65 changes are
indicated by the dashed-line curves while 2081–2100
changes are displayed as the solid-line curves. The up-
per two panels show absolute changes in warm and cold
temperature extremes, while the lower two panels dis-
play their changes relative to the changes in mean tem-
perature of the climatologically warmest or coldest
months of year, respectively. The central 50% inter-
model range of zonally averaged changes is also shown
for the A1B experiment in both time periods by light
green cross-hatching.

As expected, the smallest warming is simulated in the
B1 experiment, which has the slowest growth of the
greenhouse gas concentrations. The midcentury re-
sponses in the A1B and A2 experiments are compa-
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rable, as expected from the similar magnitudes of the
greenhouse forcing in these two scenarios leading up to
this period. Warming in the A1B scenario tends to be
slightly stronger than in the A2 scenario in the middle
of the century, but not very significantly so, consistent

with the larger sulfate aerosol loadings in the A2 sce-
nario (see Fig. 1). The greatest warming is simulated in
2081–2100 under the A2 scenario as a result of the
strong greenhouse forcing in this period. The late-
twenty-first-century warming with the B1 emission sce-

FIG. 9. (top) The multimodel mean change in 20-yr return values of annual (left) warm temperature extremes and (right) cold
temperature extremes as simulated by 12 IPCC AR4 models in 2046–65 relative to 1981–2000 in the SRES A1B experiment. (middle)
The corresponding changes in temperature extremes relative to the changes in the maximum (for Tmax,20) or minimum (for Tmin,20) of
the annual cycle. Units are °C. (bottom) Waiting times (yrs) for late-twentieth-century temperature extremes Tmax,20 and Tmin,20 in
2046–65. Changes that are not statistically significant at the 10% level are masked out in white. Global averages (or global medians for
the waiting times) are indicated in the titles.
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nario is comparable to that simulated in 2046–65 in the
other two scenarios.

Figure 12 displays boxplot summaries of regionally
averaged projected changes in temperature extremes
for 2081–2100 relative to 1981–2000 when the three sce-
narios diverge in their degree of anthropogenic forcing.

The multimodel mean change and the central 50% in-
termodel range of globally and land-averaged changes
in temperature extremes are documented in Table 5.
Cold extremes warm faster than the warm extremes by
about 30%–40%, on average over the globe, and by
about 25% over land. The warming of cold extremes is
more than twice as large as that of warm extremes in
the Arctic, about 50% larger in the North American
region and about 30% larger in the European region.
Changes in snow cover and sea ice are likely respon-
sible for the greater warming of cold extremes in these
regions.

The uncertainty of changes in temperature extremes
simulated by individual models tends to be larger for
cold extremes than for warm extremes. Over the
oceans, the larger spread is confined to areas adjacent
to sea ice and is likely associated with uncertainty in
simulating sea ice changes under global warming. Over-
all uncertainty in warm extreme changes is dominated
by intermodel differences in mid and high latitudes,
while forcing uncertainty dominates in tropical and sub-
tropical regions. This is, for example, evident in the plot
of zonally averaged responses shown in Fig. 11 (top

FIG. 11. Multimodel mean changes in zonally averaged (left) Tmax,20 and (right) Tmin,20 simulated by 12 IPCC AR4
models in 2046–65 (solid lines) and 2081–2100 (dashed lines) relative to 1981–2000 in the SRES B1 (blue curves), A1B
(green curves), and A2 (red curves) experiments. The upper panels display absolute changes in temperature extremes.
The lower panels display changes in temperature extremes relative to the corresponding changes in the maximum (for
Tmax,20) or minimum (for Tmin,20) of the annual cycle. Light green hatching indicates the central 50% intermodel range
for the A1B scenario in the two time periods. Units are °C.

FIG. 10. The difference between the multimodel mean changes
in Tmax,20 and Tmin,20 as simulated by 12 IPCC AR4 models in
2081–2100 relative to 1981–2000 in the SRES A1B experiment.
Units are °C. Changes that are not statistically significant at the
10% level are masked out in white.
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left). The late-twenty-first-century zonally averaged
multimodel mean Tmax,20 responses in the B1 and A2
experiments are well outside of the central 50% inter-
model range in the A1B experiment between 45°S and
45°N but are generally within the intermodel range at
higher latitudes. The boxplots of regionally averaged

changes in warm extremes also confirm this tendency
(Fig. 12, top left). There is only little overlap between
the typical intermodel ranges of responses in warm ex-
tremes for different emission scenarios in Africa, South
America, and in tropical and subtropical zonal bands,
while the intermodel differences are comparable to, or
larger than, interscenario differences in North America,
Europe, the Arctic, and Antarctica. A similar tendency
is found for uncertainty in changes in cold extremes
except that the regions of comparatively larger inter-
model differences, as compared to interscenario differ-
ences, are less uniformly distributed in northern mid
and high latitudes but mainly confined to extratropical
oceans and land regions in the vicinity of the retreating
snow cover line.

b. Changes in precipitation extremes

The multimodel ensemble change in precipitation ex-
tremes is displayed as the multimodel median response
instead of the ensemble mean response. Both the mean

TABLE 5. The multimodel ensemble mean and interquartile
range of changes in 20-yr return values of annual warm and cold
extremes (�Tmax,20 and �Tmin,20, °C) averaged over the globe and
land as simulated by 10 IPCC AR4 models in 2046–65 and 2081–
2100 relative to 1981–2000 in the SRES B1, SRES A1B, and
SRES A2 experiments.

2046–65 2081–2100

B1 A1B A2 B1 A1B A2

�Tmax,20 (°C) globe 1.21.4
1.1 1.71.9

1.5 1.71.8
1.6 1.71.9

1.4 2.52.9
2.2 3.23.5

2.9

�Tmax,20 (°C) land 1.72.0
1.5 2.32.6

2.0 2.32.4
2.1 2.32.6

1.9 3.54.0
3.0 4.34.7

4.0

�Tmin,20 (°C) globe 1.72.0
1.4 2.32.5

2.1 2.12.4
1.9 2.42.8

2.0 3.53.9
3.2 4.14.4

4.0

�Tmin,20 (°C) land 2.12.4
1.8 2.93.2

2.8 2.83.1
2.6 2.93.5

2.5 4.55.0
4.2 5.45.8

5.2

FIG. 12. Boxplots of changes in regionally averaged (left) warm temperature extremes Tmax,20 and (right) cold temperature extremes
Tmin,20 as simulated by 12 IPCC AR4 models in 2081–2100 relative to 1981–2000. (top) Absolute changes in temperature extremes.
(bottom) Changes in temperature extremes relative to the corresponding changes in the maximum (for Tmax,20) or minimum (for
Tmin,20) of the annual cycle.
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and the median are measures of the central tendency in
the ensemble response. The two measures are generally
very similar for changes in temperature extremes pre-
sented in the previous section, indicating that the dis-
tributions of responses in extreme temperatures simu-
lated by individual models are reasonably symmetric
about the central value. The situation is somewhat dif-
ferent for ensemble changes in extreme precipitation.
The distribution of tropical changes (not shown) is
skewed toward relatively larger responses. In particu-
lar, the two GFDL models simulate very large re-
sponses in the tropical extreme precipitation by ap-
proximately doubling the magnitude of 20-yr return
values by the end of the twenty-first century in the
SRES A2 experiment. The tendency toward generally
wider upper tails and shorter lower tails in the distri-
butions of ensemble responses is also present in the
extratropics. A general skewness to the right is not sur-
prising considering the fact that precipitation is a non-
negatively defined quantity. Therefore, possible outli-
ers seem more likely to occur at the upper end of the
distribution. The median response appears to be less
sensitive to such outliers than the mean response.

The median value may also be a more appropriate
choice as a measure of central tendency when the sta-
tistic in question depends on the location of the parent
distribution in a highly nonlinear fashion. A typical ex-
ample is the probability of exceedance above some
large threshold. A positive shift of the overall distribu-
tion would result in a relatively larger increase in ex-
ceedance probability than would a negative shift of the
same amplitude. For example, shifting the mean of a
normal distribution one standard deviation to the right
will result in a 30% increase in the probability of ex-
ceeding the original 90th percentile, while a negative
change of the same amplitude will decrease the exceed-
ance probability by only about 9%. This asymmetry in
probability response will generally result in a positive
bias of the ensemble mean probability response when
averaged across a mixture of positive and negative re-
sponses. The median value seems to be less prone to
such biases.

A similar effect is also expected for changes in wait-
ing times of extreme precipitation events exceeding a
specified threshold. By definition, the waiting time is
1/p, where p is the probability of an extreme event and
is bounded from below by one but unbounded from
above, occasionally resulting in very large waiting times
when the probability of an event approaches zero. Thus
the arithmetic mean of estimated waiting times will
likely be positively biased and thus the median value
again seems to be a more appropriate measure of the
central tendency of changes in waiting times. This is

also true when calculating regional estimates of waiting
times. Thus, in the following we use the spatial median
value instead of the spatial mean value when reporting
regional estimates of changes in waiting times for the
late-twentieth-century extreme precipitation events.

The top two panels in Fig. 13 display the multimodel
median response in annual mean precipitation as simu-
lated by the IPCC AR4 models in 2046–65 (left panel)
and 2081–2100 (right panel) in the SRES A1B experi-
ment. The middle two panels display the corresponding
changes in 20-yr return values of annual 24-h precipi-
tation extremes. The changes are expressed as a per-
centage of 1981–2000 values. Mean precipitation in-
creases in the Tropics and in the mid- and high latitudes,
while it decreases in the subtropics. Negative changes in
extreme precipitation occur over much smaller regions,
as compared to those for mean precipitation, and are
generally not statistically significant. There are exten-
sive subtropical areas where the IPCC models predict
an increase in the intensity of precipitation extremes,
while mean precipitation decreases. The multimodel
median globally averaged change in mean precipitation
is 1.9% in 2046–65 and 3.4% in 2081–2100 in the SRES
A1B experiment in the considered models. The corre-
sponding changes in extreme precipitation are 7.7%
and 12.3%. These findings are consistent with the re-
sults from a recent study by Emori and Brown (2005),
who also found comparatively larger increases in ex-
treme precipitation as compared to changes in mean
precipitation in an ensemble of six climate models.

The bottom two panels of Fig. 13 display the multi-
model ensemble median of waiting times for annual
24-h precipitation extremes of the size of 1981–2000
20-yr return values. Except for a few small subtropical
regions where the amplitude of extreme precipitation
decreases, waiting times for the late-twentieth-century
extreme precipitation events are reduced almost every-
where over the globe. Not surprisingly, the changes in
waiting times are consistent with changes in the ampli-
tude of extreme precipitation. Roughly speaking, the
waiting times are reduced by a factor of 2 with a 10%
increase in the amplitude of P20. Waiting times de-
crease almost everywhere over landmasses, except for
North Africa where waiting times tend to increase. The
spatial median value of the waiting times over land is
reduced from 20 yr to about 12 yr in 2046–65 and less
than 10 yr in 2081–2100 in the SRES A1B experiment
(see Table 6). The greatest reductions in waiting time
occur in tropical regions and high latitudes.

Interscenario differences are illustrated in Fig. 14.
The change in mean precipitation is small or negative in
the 45°–10°S and 10°–40°N zonal bands, whereas the
magnitude of extreme precipitation increases by up to
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15%–20% in these regions, on average. Elsewhere,
both mean and extreme precipitation increase. The
Arctic appears to be the only region where the pro-
jected relative changes in mean precipitation exceed
those in extreme precipitation.

Regional changes in mean and extreme precipitation
and in waiting times are summarized in boxplot dia-
grams in Fig. 15 and in Table 6. It is evident from the
boxplots that intermodel uncertainties in extreme pre-
cipitation changes are much larger than in mean pre-

FIG. 13. The multimodel median relative change (%) in the (top) annual mean precipitation rate and (middle) in 20-yr return values
of annual extremes of daily precipitation as simulated by 14 IPCC AR4 models in (left) 2046–65 and (right) 2081–2100 relative to
1981–2000 in the SRES A1B experiment. The lower panels display the corresponding median of waiting times (yr) for late-twentieth-
century P20. Changes that are not statistically significant at the 10% level are masked out in white. Global averages (or global medians
for the waiting times) are indicated in the titles.
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cipitation and that these uncertainties increase quite
substantially with the increased anthropogenic forcing
by the end of the twenty-first century. The largest
spread in extreme precipitation changes simulated by
individual models occurs in the Tropics, especially over
the tropical Pacific. Globally averaged relative changes
in mean and extreme precipitation are comparable to
those averaged over landmasses only. Mean precipita-
tion in the northern extratropics north of 35°N and in
the Tropics (10°S–10°�) increases by about equal per-
centages (Table 6). However, simulated relative in-
creases of the intensity of extreme precipitation in the
Tropics exceed those in the northern extratropics by a
factor of approximately 1.5, on average.

Allen and Ingram (2002) and Trenberth et al. (2003),
among others, argue that, while global mean precipita-
tion is primarily constrained by the energy budget, the
intensity of heavy precipitation events should increase
with the availability of moisture at a rate close to the
Clausius–Clapeyron rate of about 6%–7% per kelvin.
To verify this contention in the present ensemble of
global climate models, the left panel of Fig. 16 displays
the relative changes (%) in globally averaged P20 as a
function of global annual mean temperature changes as
simulated by the IPCC AR4 models in 2046–65 and
2081–2100 under the three emission scenarios. Daily
mean temperature is approximated by the average of
daily Tmax and Tmin. A histogram of the “hydrological
sensitivities” for extreme precipitation, �P20(%)/
�T(K), is shown in the right-hand panel of Fig. 16.

The median sensitivity of about 6% K�1 is consistent
with the projected Clausius–Clapeyron rates cited
above. However, it is also evident that there is a great

deal of intermodel variability. Four models particularly
stand out. The two GFDL models simulate extremely
large increases in globally averaged extreme precipita-
tion, mostly in the Tropics, and are well outside the
range of the remaining collection of models on the up-
per end. The lowest sensitivity of extreme precipitation
to changes in mean temperature of 2%–3% K�1 is
found in the INM-CM3.0 and GISS-ER models. The
remaining models simulate the sensitivities in the range
4%–10%. It is also interesting to note that there seems
to be no apparent relationship between the hydrologi-
cal sensitivity for extreme precipitation and global tem-
perature response. For example, the GFDL CM2.0 and
INM-CM3.0 models have comparable global tempera-
ture changes but vastly different responses in extreme
precipitation.

6. Summary

The present study documents the performance of
global coupled climate models that participated in the
IPCC diagnostic exercise for the Fourth Assessment
Report in simulating annual extremes of surface tem-
perature and daily precipitation rates and their changes
as simulated by the models under the three emission
scenarios, SRES B1, A1B, and A2. Among these three
scenarios, B1 envisions the slowest growth of anthro-
pogenic greenhouse forcing while A2 projects the fast-
est growing forcing.

Climate extremes are evaluated in terms of 20-yr re-
turn values of annual extremes for three time periods,
1981–2000, 2046–65, and 2081–2100. The 1981–2000 pe-
riod serves as the baseline for future changes. Late-

TABLE 6. Multimodel ensemble median and interquartile range of relative changes in regional estimate of mean precipitation �P (%),
20-yr return values of annual 24-h precipitation extremes �P20 (%), and the waiting times for present-day P20 (T, yr) averaged over the
globe, land, NHE (35°–90°N) and TRO (10°S–10°N) as simulated by 12 IPCC AR4 models in 2046–65 A2 experiments. Regional
estimates of waiting times are defined as the area weighted median values.

2046–65 2081–2100

B1 A1B A2 B1 A1B A2

�P (%) globe 2.22.5
1.9 2.93.2

2.3 2.43.2
1.7 3.63.9

3.1 4.65.7
3.4 5.36.1

3.8

�P (%) land 2.43.4
1.9 3.74.3

3.0 3.44.3
2.1 4.25.1

3.0 5.76.6
4.4 6.87.7

5.9

�P (%) NHE 4.04.4
3.5 5.06.2

4.1 4.35.6
3.6 6.16.8

5.4 8.210.3
5.7 8.811.3

6.5

�P (%) TRO 3.94.8
3.6 5.26.0

4.0 4.75.8
3.9 5.97.2

5.5 7.79.4
6.3 9.710.8

6.6

�P20 (%) globe 7.410.0
4.7 10.515.5

6.2 9.613.7
7.0 10.813.6

6.7 16.322.3
10.0 19.432.8

12.0

�P20 (%) land 7.311.1
4.6 10.316.0

5.9 10.014.7
5.5 10.315.1

6.9 16.224.3
9.8 19.533.8

11.6

�P20 (%) NHE 7.710.0
5.8 10.613.8

8.7 10.612.2
7.0 10.714.3

8.1 17.922.0
13.2 21.824.1

16.0

�P20 (%) TRO 10.514.9
5.9 15.222.1

7.9 13.718.9
9.3 15.519.0

8.9 24.929.8
10.4 29.247.9

17.8

T (yr) globe 13.214.8
12.2 11.513.2

10.2 11.513.0
10.9 12.213.3

9.8 9.510.7
7.2 7.59.3

6.2

T (yr) land 13.214.5
11.9 10.712.2

10.1 11.612.8
10.4 11.812.4

9.7 9.010.3
7.1 7.28.9

5.8

T (yr) NHE 12.613.6
10.8 10.611.7

9.2 10.712.1
10.0 10.811.7

9.0 8.29.4
6.4 6.67.5

5.8

T (yr) TRO 11.414.7
10.7 9.413.5

8.0 9.512.0
8.8 9.412.1

8.3 6.911.3
5.2 5.79.5

4.2
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twentieth-century temperature and precipitation ex-
tremes are evaluated for 14 and 16 models, respectively.
Changes in extremes are evaluated only for models for
which daily output was available for all three scenarios,
resulting in a 12-model ensemble for temperature ex-
tremes and a 14-model ensemble for precipitation ex-
tremes. The analysis of changes was also repeated for
all available models but without any substantial modi-
fications in the results.

The simulated late-twentieth-century extremes are
compared to those estimated from four reanalyses, the
older NCEP–NCAR and ERA-15 products and the
more recent NCEP–DOE AMIP-II and ERA-40 prod-
ucts. Model-simulated extremes of precipitation pen-
tads (nonoverlapping 5-day means) were also com-
pared to those estimated from the CMAP pentad

dataset. Changes in the amplitude of warm and cold
temperature extremes are compared to the correspond-
ing mean changes for the climatologically warmest and
coldest calendar months, respectively. Changes in the
exceedance probabilities are also examined and ex-
pressed in terms of changes in waiting times for late-
twentieth-century extreme events.

The results of the analysis are summarized as follows.

• Warm temperature extremes of the late-twentieth-
century climate are plausibly simulated by the IPCC
AR4 models. The multimodel mean globally aver-
aged 20-yr return value of annual warm extremes
Tmax,20 corresponds closely to estimates derived from
the NCEP2 and ERA-40 reanalyses. The 50% inter-
model range of globally averaged Tmax,20 estimates is

FIG. 14. Multimodel median relative change (%) in (top) the zonally averaged annual mean precipi-
tation rate, (middle) 20-yr return values of annual extremes of 24-h precipitation rates, and (bottom) the
zonal median of the waiting times for present-day P20 (yr) as simulated by 14 IPCC AR4 models in
2046–65 (dashed lines) and 2081–2100 (solid lines) relative to 1981–2000 in the SRES B1 (blue), A1B
(green), and A2 (red) experiments. Light green hatching indicates the central 50% intermodel range for
the A1B scenario in the two time periods.
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fairly narrow indicating that most of the models per-
form well on a global scale. Model differences are
generally larger over land than over oceans.

• Uncertainties in model-simulated cold extremes for
the late-twentieth-century climate are larger than
those for warm extremes. The available estimates

from reanalyses are also less consistent. For example,
the NCEP2 and ERA-40 estimates of 20-yr return
values of annual cold extremes Tmin,20 disagree sig-
nificantly over land, with the former being colder by
more than 8°C than the latter on average. The mul-
timodel ensemble mean of Tmin,20 estimates, aver-

FIG. 15. Boxplots of relative changes (%) in (top) the regionally averaged annual mean precipitation rate (P5
20), (middle) 20-yr return

values of annual extremes of 24-h precipitation rates (�P20), and (bottom) the waiting times for late-twentieth-century P20 as simulated
by 14 IPCC AR4 models in (left) 2046–65 and (right) 2081–2100 relative to 1981–2000 with the SRES B1 (blue), A1B (green), and A2
(red) emission scenarios. The boxes indicate the central 50% intermodel range and the median. The whiskers extend to the lower and
upper model extremes. The regions are defined in Table 2.
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aged over the globe or over land, falls between the
estimates from the two reanalyses. The central 50%
intermodel range of simulated Tmin,20 averaged glo-
bally or over land coincides approximately with the
range between the reanalyses.

• The performance of the IPCC AR4 CGCMs in simu-
lating extreme precipitation is comparable to that of
the AMIP2 atmospheric models reported by Kharin
et al. (2005). The coupled models agree satisfactorily
on the amplitude of 20-yr return values of annual
precipitation extremes (P20) in the extratropics but
exhibit very large differences in the Tropics. For ex-
ample, the intermodel standard deviation of P20 in
temperate regions is about 20% of the ensemble
mean value, whereas it is more than 60% of the en-
semble mean value in tropical regions. The models
compare reasonably well with the observational evi-
dence in the extratropics. But, the available reanaly-
ses do not provide a reliable consensus on the mag-
nitude of the observed precipitation extremes in the
Tropics where differences between reanalyses are
comparable to those between the models. In the
Tropics, models simulate more moderate precipita-
tion extremes than in the ERA-40, NCEP2, and
ERA-15 reanalyses. There is a tendency for stronger
precipitation extremes in models with higher hori-
zontal resolution, but the dependence on resolution is
not robust across different models, particularly in the
Tropics.

• Changes in warm extremes more or less follow
changes in the mean temperature of the climatologi-

cally warmest month. That is, changes in the summer-
time mean temperature are reasonably good predic-
tors of changes in warm extremes, at least on a global
scale. The ensemble mean changes in Tmax,20 over
land range from 1.7°C in 2046–65 in the SRES B1
experiment to 4.2°C in 2081–2100 in the SRES A2
experiment. The spread in the responses generally
increases with the strength of the anthropogenic forc-
ing, which is an indication of different climate sensi-
tivities of the models. For example, the globally av-
eraged root-mean-square (rms) difference from the
ensemble mean response is about 0.7°C in 2046–65 in
the B1 scenario but increases to 1.2°C in 2081–2100 in
the A2 scenario when the forcing is substantially
stronger. Multimodel mean increases in warm ex-
tremes averaged over land are about 35%–40%
larger than those averaged over the globe in the con-
sidered scenarios and time periods.

• Cold extremes warm faster than warm extremes by
about 30%–40% over the globe, on average, or about
25% over landmasses. Most of this excessive warming
is confined to regions where snow and sea ice retreat
under the global warming. For example, the magni-
tude of the warming in cold extremes in the Arctic
regions north of 65°� is more than a factor of 2
greater than the corresponding warming in warm ex-
tremes. Cold extremes warm faster than warm ex-
tremes by about 30% in the European region and up
to 50% in the North American region. Changes in the
cryosphere are also likely responsible for faster
warming of cold extremes as compared to changes in

FIG. 16. (left) Relative changes (%) in globally averaged 20-yr return values of annual 24-h precipitation extremes
(�P20) plotted on a log scale as a function of globally averaged changes in mean surface temperature �T (K) simulated
by the IPCC AR4 models in the SRES B1 (circles), A1B (squares), and A2 (diamonds) experiments in 2046–65 (empty
symbols) and 2081–2100 (gray symbols). The median slope of 6.2% K�1 and the 15th and 85th percentiles are indicated
by the bold dashed and dotted lines, respectively. (right) Histogram of �P20/�T (% K�1) simulated by the IPCC AR4
models in the three scenarios and two time periods. The models are indicated by numbers in both panels as 1: CCCMA
CGCM3.1(T47), 2: CCCMA CGCM3.1(T63), 3: CNRM CM3, 4: ECHO G, 5: GFDL CM2.0, 6: GFDL CM2.1, 7: GISS
AOM, 8: GISS ER, 9: INM CM3.0, 10: IPSL CM4, 11: MIROC3.2(hires), 12: MIROC3.2(medres), 13: MPI ECHAM5,
and 14: MRI CGCM2.3.2.
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the mean wintertime temperature. The ensemble
mean change in Tmin,20 over land ranges from 2.1°C in
2046–65 in the SRES B1 experiment to 5.4°C in 2081–
2100 in the A2 experiment. The intermodel uncer-
tainty of these changes tends to be somewhat larger
than for warm extremes. To a large degree, the larger
spread of the model responses for cold extremes is
confined to regions adjacent to the sea ice line and is
likely associated with uncertainties in simulating sea
ice changes under the global warming.

• Fractional increases in the intensity of precipitation
extremes generally exceed those for mean precipita-
tion. Extreme precipitation decreases in only a small
fraction of the subtropical area where mean precipi-
tation decreases. Globally averaged, the multimodel
P20 increase is about 10% in the SRES B1 experi-
ment, 16% in the A1B experiment, and 20% in the
A2 experiment by the end of the twenty-first century.
When compared to the corresponding changes in
global mean temperature, changes in extreme pre-
cipitation translate roughly to a consensus of about
6% K�1 of global warming, which is consistent with
the predicted change implied by the Clausius–
Clapeyron relation, with most of the models simulat-
ing values in the range of 4%–10% K�1. Consistent
with changes in the magnitude of extreme precipita-
tion, waiting times for late-twentieth-century extreme
precipitation events are reduced almost everywhere
over the globe. Waiting times in the Tropics and in
mid and high latitudes are reduced by a factor of
about 2 in 2046–65 and by a factor of about 3 in
2081–2100 in the SRES A1B and A2 experiments,
with more moderate changes in the B1 experiment.
The very large intermodel disagreements in the Trop-
ics suggest that some physical processes associated
with extreme precipitation are not well represented
in models. This reduces our confidence in the pro-
jected changes in extreme precipitation.

• Model differences, rather than sampling error, ap-
pear to be the main source of uncertainty in the simu-
lated late-twentieth-century temperature and precipi-
tation extremes in the considered multimodel en-
semble. The overall uncertainty in local changes in
temperature extremes is dominated by intermodel
differences and sampling errors in mid and high lati-
tudes while forcing uncertainty becomes important in
the Tropics and subtropical regions. Intermodel dif-
ferences generally dominate the uncertainty in
changes in precipitation extremes.
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