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The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth’s
largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmo-
spheric circulation and hydrological cycle. The region has also experienced the world’s highest rates of sea-level rise
in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island
states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the
causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific
Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing
observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is
found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations
associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the
shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the
causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understand-
ing and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have
profound socioeconomic consequences.
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INTRODUCTION

The Indo-Pacific warm pool (IPWP), where sea surface temperatures
(SSTs) exceed 28°C (which is an estimated threshold for atmospheric
deep convection), supports the Walker circulation’s rising branch and
largely determines rainfall distribution throughout the tropics to extra-
tropics (1, 2). It plays a key role in climate and monsoon variability for
many developing countries throughout Asia and Africa (3–7), but also
influences remote regions and large-scale climate modes of variability
(8–10). From year to year, IPWP intensity and size fluctuate with the
El Niño–Southern Oscillation (ENSO) (5, 11–13). The ongoing IPWP
warming and expansion in recent decades (5, 7, 11, 12) (Fig. 1A) are, by
one estimate, responsible for more tropical Indo-Pacific SST variance
than anomalies associated with ENSO (5).

Recent studies suggest greenhouse gas–induced warming to be the
major cause for global ocean temperature (14) and tropical Indian
Ocean SST changes (12, 15–17), but its role in the observed IPWP region
changes (14, 16, 17) is not clear. We provide the first quantitative at-
tribution of the observed IPWP warming and expansion changes
during the past 60 years, examining anthropogenic and natural contribu-
tions to the IPWP warming and expansion. We address this by com-
paring observed 1953–2012 changes with climate model–simulated
changes using CMIP5 (Coupled Model Intercomparison Project Phase
5) (18) historical climate change simulations that account for anthro-
pogenic forcing (greenhouse gases, aerosols, and other anthropogenic
forcing agents) combined with natural (solar and volcanic activities)
forcings (ALL), greenhouse gas forcing only (GHG), or natural forcings
only (NAT).
RESULTS
Observed and modeled changes
Models simulate the observed Indo-Pacific warming and IPWP ex-
pansion (Fig. 1B) reasonably well, albeit with greater warming and ex-
pansion in the central to eastern Pacific (fig. S1), a region affected by
persistent biases (for example, excessively strong equatorial Pacific cold
tongue) (19). We focus our analysis on 29 of 42 models (tables S1 and
S2; see Materials and Methods) that simulate a realistic IPWP (that is,
comparable size to observations; fig. S2) to reduce the impact of biases
because there is a close relationship between IPWP mean size with
changes in intensity and area (fig. S3). Specific forcing experiments
show that realistic changes occur only when greenhouse gases are in-
cluded (Fig. 1, B to D) but that the response is stronger than observed
in GHG-only experiments, which exclude negative contributions from
other anthropogenic forcings, such as aerosols (16, 17).

To examine long-term IPWP intensity and area changes, we
considered nonoverlapping 5-year annual means over the 60-year peri-
od. Mean IPWP SST and area are calculated over the Indo-Pacific region
enclosed by the 28°C isotherm between 25°S to 25°N and 40°E to 130°W.
We also independently analyze the Indian and Pacific Ocean warm pools
(Fig. 1A). The IPWP warmed and expanded steadily until the late 1990s,
followed by weaker trends, as observed in global mean temperature (Fig.
2) (20). The ALL and anthropogenic forcing (ANT; estimated as ALL
minus NAT) simulations show realistic increasing trends, whereas GHG-
only trends are significantly larger than observed. In contrast, NAT-only
simulations have varying decadal trends, resulting in no significant long-
term trend. The signal induced by ANT-only is therefore close to that from
ALL forcing (Table 1). Preindustrial control simulations from the models
are used to provide a measure of the range of trends arising from unforced
internal climate variability, which the observed trends exceed (Fig. 2).

Despite studies reporting tropical Indian Ocean warming at a rate of
up to three times faster than the tropical Pacific (fig. S4A) (5, 12, 17, 21),
trends are comparable if only area-mean SSTs averaged in the expanding
warm pool of both oceans are compared, due to the larger increase in
warm pool size in the Indian Ocean (Fig. 2 and Table 1). Therefore,
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the zonal intensity gradient (Indian minus Pacific) between the two warm
pool sectors has experienced little change (fig. S4B). Year-to-year
variations of approximately 10 to 15% (relative to the climatological
mean) in IPWP size occur with ENSO (12, 13, 22), far less than the ob-
served expansion of over 30% since the 1950s (Fig. 2B and Table 1).
Warm pool expansion in the Indian Ocean (51%) has also far exceeded
that in the Pacific Ocean (22%) (Fig. 2B and Table 1). These results are
consistent among observational data sets despite some regional differ-
ences, and are different to similar expansion rates in both basins as-
sociated with a uniform warming (fig. S5).

Detection of human influence
To detect and quantify contributions from ALL, GHG, ANT, and NAT
forcings to long-term variations in IPWP intensity and area, we use an
optimal fingerprinting technique (23). In this method, observations are
regressed via generalized linear regression onto one or two multimodel-
simulated signals (see Materials and Methods for details). We conduct
single-signal analyses by regressing observations onto model-simulated
responses to ALL, ANT, GHG, and NAT forcings estimated from the
average of the selectedmodel ensemble.We conduct a two-signal analysis
in which observations are simultaneously regressed onto ANT and NAT
response to estimate the contribution of both anthropogenic and natural
forcings to changes inwarmpool properties.Unforced control (CTL) sim-
ulations are used toobtain an estimate of the internal climate variability, in
addition to conducting a residual consistency test (23) to compare
model-simulated internal variabilitywith observations. Resultingbest es-
timates and uncertainty ranges of scaling factors, which scale estimates of
the responses to individual combinations of forcings to best reproduce ob-
served changes, are used to determine whether external forcings are pres-
ent in observations. Intensity and area changes are not perfectly correlated
(r = 0.87, P < 0.01), and thus, we combine normalized intensity and area
Weller et al. Sci. Adv. 2016; 2 : e1501719 1 July 2016
anomalies to capture additional information on changes that may im-
prove detection and attribution (24). The influence of external forcing
is detected when a scaling factor is significantly greater than zero, and
considered consistentwith observationswhen it is consistentwith unity.

Scaling factors based on single-signal optimal analyses are shown in
the left panels of Fig. 3. Except for thePacificwarmpool area, scaling factors
for ALL, GHG, and ANT are significantly greater than zero for long-term
warm pool intensity and area changes, including combined changes. This
indicates that the overall effect of external anthropogenic and natural
forcing, or the effect of greenhouse gas forcing or anthropogenic forcing
alone, can be detected. In most cases, uncertainty ranges for the scaling
factors on the ALL and ANT responses include unity, indicating
consistency with observations. Best estimates for ALL and ANT scaling
factors are slightly above one forwarmpool intensities and IndianOcean
warm pool area (Fig. 3, A and B), highlighting some underestimation of
the response in the multimodel mean. In contrast, best estimates for
GHG are below one, meaning that GHGs acting alone would have
produced larger changes than the observed. Strong agreement of best
estimates with observed trends is found in all three warm pool regions
when combining intensity and area changes (Fig. 3C). The influence of
NAT is not robustly detected in any case considered. The residual con-
sistency test is passed inmost of the single-signal cases, indicating that the
residual variability that remains in the observations after removing the
scaled response is consistent with model internal variability.

Results from two-signal (ANT and NAT) analyses of warm pool
intensity and area changes are shown in the center panels of Fig. 3. The
ANT influence is detected in all cases with clear separation from the
NAT influence except for the Pacific warm pool area. The ANT scaling
factors for IPWP changes are closest to unity with more confidence
compared to the Indian and Pacific Oceans separately. Overall, ANT
signals for warm pool intensity must be scaled up, and ANT signals
Fig. 1. Geographical distribution of SST trends and warm pool expansion over the Indo-Pacific during 1953–2012. (A to D) HadISST (39) observa-
tions (A) and CMIP5 (18) multimodelmeans for each type of forcing: (B) anthropogenic plus natural external (29models), (C) greenhouse gas only (6models),
and (D) natural external only (6models). In each panel, trends are °C per 60 years, and themean IPWP area is shown for two periods: 1953–1959 (dashed line)
and 2000–2012 (solid lines). Gray boxes in (A) depict the area overwhichwarmpool regions are calculated for the IPWP, divided into Indian andPacific sectors
by the 120°E meridian.
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for warm pool area need to be scaled up for the Indian Ocean, but CIs
encompass unity. NAT is not robustly detected because the joint con-
fidence ellipses include zero on the NAT axis in all cases.

ANT-attributable trends (calculated by multiplying two-signal
scaling factors with multimodel mean trends) are very close to observed
intensity (Fig. 3A) and area (Fig. 3B) trends. Considering combined
changes increases the “detection strength,” which is a representation
Weller et al. Sci. Adv. 2016; 2 : e1501719 1 July 2016
of the projection of any model run or observations onto the single var-
iable or combined fingerprint (24), and further increases confidence
that intensity and area changes are not due to internal variability alone
(Fig. 3C). Our detection results are robust to the use of different SST
data sets and different model sampling (see Materials and Methods).

Internal variability influence
To understand the models’ underestimation of the warm pool warming,
we assess the contribution of internal climate variability evident in ob-
servations (Fig. 2). The dominant mode of multidecadal variability in
the Indo-Pacific is the Pacific Decadal Oscillation (PDO) (25). Changes in
IPWP intensity and area associated with the observed PDO variability
during the last 60 years have augmented that due to anthropogenic
forcing. The contribution of the PDO to the observed IPWP warming
and expansion is approximately 12 to 18% (Table 1). Removing the
PDO influence from observations (based on linear regression) results in
better agreement with multimodel anthropogenic responses in intensity
trends and Indian Ocean warm pool expansion (Fig. 2) (26, 27).

Impact of IPWP changes
We investigate the impact of the nonuniform IPWP changes focusing
on rainfall responses using observations and CMIP5 models. On the
basis of the observations for the satellite period, different rainfall change
patterns appear to be more associated with individual Indian and Pacific
warm pool changes than for the IPWP as a whole (fig. S6). This em-
phasizes the importance of the regional IPWP warming patterns in
terms of IPWP’s impacts and teleconnections. Satellite period observa-
tions show more warming and larger expansion in the Indian Ocean
warm pool than in the Pacific, together with an intensification and
westward shift in precipitation change, even after accounting for the in-
fluence of internal variability during this period (fig. S7, A and B). The
notion that the asymmetric response in the IPWP changes is not due
to fluctuations of internal variability is supported by the CMIP5 models
because they exhibit no relationship between the ratio of Indian and Pacific
warm pool expansion with the PDO trend over a 60-year period (fig. S7C).
We use CMIP5 models to further explore the individual impacts of Indian
and Pacific Ocean warm pool warming and expansion on rainfall. To
do so, we have selected two groups of models: one with trends in
IPWP intensity and area similar to those observed, that is, with stronger
warming and expansion trends in the Indian Ocean than in the Pacific
Ocean (five models; refer to caption in fig. S8), and another group with
opposite trends (six models). Note that we use a longer period of
1953–2012 to focus on long-term responses, different from the ob-
served period (1979–2012).

Regional precipitation patterns are determined by relative changes
in the spatial pattern of the tropical SST climatology (28–30). Given
the large intermodel differences in tropical SST climatology and trends,
one cannot expect good intermodel agreement in rainfall responses
(28, 31). Accordingly, our results show generally low agreement in
rainfall trends except in a few regions (fig. S8). In particular, models
with larger expansion in the Indian Ocean, like the recent observations,
tend to have increased rainfall over the western Indian Ocean that re-
sembles the observed trend. In contrast, models with stronger warm
pool warming and expansion in the western Pacific exhibit a decrease
in precipitation over Southeast Asia. This model-simulated drying re-
sponse is consistent with previous findings (32, 33), which describe the
major role of zonal SST difference between the tropical Indian Ocean
and western Pacific Ocean in determining the strength of the western
Fig. 2. Time series of 5-year mean anomalies of warm pool intensity
and area. (A) Observed (39) (black) SST anomalies (°C)with (solid) andwithout
(dashed) PDO influence are comparedwithmultimodelmean–simulated re-
sponses to anthropogenic plus natural external forcings (ALL; green), anthro-
pogenic forcing (ANT; calculated as ALLminusNAT; orange), greenhousegas
only forcing (GHG; red), and natural external only forcings (NAT; blue) for the
Indo-Pacific (top), Indian Ocean (center), and Pacific Ocean (bottom) warm
pools. Gray dashed lines represent the 5 to 95% range of internal variability
taken from control (CTL) simulations. Linear trends [error bars representing
5 to 95% confidence intervals (CIs)] for observationswith (black) andwithout
(white) PDO andmultimodelmean over the period 1953–2012 are displayed
to the right. (B) The same as (A) but for warm pool area anomalies (as a per-
centage of each 1971–2000 mean) in the three warm pool regions.
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Pacific subtropical high and thus affecting East Asian monsoon rainfall
and western Pacific tropical cyclone activity. Australian rainfall response
in models is also consistent with recent findings (34), which indicate that
a warming Indian Ocean warm pool induces rainfall increase, whereas
a warming Pacific warm pool leads to rainfall reduction (fig. S8). The
spatial pattern of difference in rainfall trends between the two model
groups (models with larger expansion in the Indian Ocean minus
models with larger expansion in the Pacific Ocean) is very similar to
the observed pattern of trends (compare fig. S8C with fig. S7), con-
firming the importance of the area of SST contrast between the two
warm pool areas. The individual models help highlight the large spread
that still exists in models with similar changes in expansion of the
IPWP, explaining why we see only limited regions of significant change
(fig. S8D). For example, the difference in the western Indian Ocean is
significant (at the 1% level) between the two model groups because the
realistic models all simulate the increase in rainfall. Conversely, the
opposite is seen for the East Asian region, where models that simulate
larger Pacific expansion have a decrease in rainfall, again consistent with
previous modeling studies, which showed that a significant drying re-
sponse over East Asia is primarily associated with stronger Pacific
warming (32, 33). Consistent with the observations, the ensemble mean
of models with the more realistic larger Indian Ocean expansion does
not simulate an increase in the East Asia region. In the observations,
the small significant region of drying over East Asia is removed once
the PDO is accounted for (fig. S7). This corroborates previous findings
that the negative PDO-like SST pattern that prevailed during the recent
hiatus period explains pronounced regional drying anomalies in this
region (33).

Regions of deep convection are integral to the large-scale circulation
in the tropics and closely tied to areas of warm SSTs (35, 36). However,
the size of this region of convection has been shown to remain relatively
constant in a warming world, suggesting that the convective threshold
increases with SST and that precipitation intensity increases within the
region that lies above the changing convective threshold (11, 36). We
have therefore also examined convection changes that correspond to
Weller et al. Sci. Adv. 2016; 2 : e1501719 1 July 2016
IPWP changes based on a simple analysis of CMIP5 models. We find
that rainfall intensity modestly increases with warming in the IPWP in
most of the models, but the convection area (diagnosed as the area
with precipitation > 2 mm day−1) changes very little (fig. S9). In contrast
to the warm pool expansion, both basins experience a similar increase
in warm pool intensity, and thus, simulated changes in precipitation in-
crease as described in previous studies (11, 37) and as observed. Overall,
although the convection area does not vary significantly in the long term
as the convection threshold increases with SST, covering about 25%
of the global ocean (11), its location has undergone a significant shift
westward with a relatively larger area with SSTs above the convection
threshold in the Indian Ocean.
DISCUSSION

Our results identify contributions from anthropogenic forcings (mainly
greenhouse gas increase) and natural causes (the PDO) to observed IPWP
warming and expansion during the last 60 years. This quantitative attribu-
tion of the influence of anthropogenic forcing and also assessment of cli-
mate variability increases confidence in the understanding of the causes of
past changes as well as for projections of future changes under further
greenhouse warming. Expansion of the IPWP due to anthropogenic
forcingwill likely continue; however, shifts in themean state of the tropical
ocean (13, 20, 21, 26) could change the relative amounts of expansion in
the two adjacent oceans andmodulate the long-term change in the IPWP
impact. This has important implications formany vulnerable regions. For
example, stronger than normal summer Indianmonsoons are preceded by
an expanding and warming Indian Ocean warm pool (22). A mean state
change in this direction could also affect East Asian climate by inducing a
westward extension of the western Pacific subtropical high (3). In addition
to long-term trends, decadal variability in IPWP intensity and size can di-
rectly affect the Hadley and Walker circulations, inducing corresponding
changes in rainfall even in theextratropics (38).Thismeans thatunderstanding
and predicting changes of the IPWPmean state as well as regional con-
Table 1. Comparison of trends in warm pool intensity and area between observations and climate model simulations. Multimodel means of linear
trend slopes are defined as the signal (SALL, SANT, SGHG, or SNAT), and the SD of trends across nonoverlapping CTL chunks is defined as the noise (N). The 5 to
95% CIs are shown in Fig. 2. Signal-to-noise ratios (SNRs) are then calculated from slopes of SST and area series averaged over the three warm pool regions
during 1953–2012 for ALL and ANT simulations. Observational (39) trend slopes with (SOBS) and without the influence of the PDO (SOBS*) are given for com-
parison. Units for S and N are °C and % per 60 years for warm pool intensity and area, respectively.
SALL
(SNRALL)
SANT
(SNRANT)
SGHG
 SNAT
 NCTL
 SOBS
SOBS*
Intensity (°C per 60 years)
Indo-Pacific
 0.25 (7.24)
 0.24 (7.01)
 0.39
 0.01
 0.03
 0.30 (0.26*)
Indian
 0.26 (9.16)
 0.25 (8.97)
 0.43
 0.01
 0.03
 0.34 (0.28*)
Pacific
 0.28 (6.14)
 0.27 (6.02)
 0.43
 0.01
 0.05
 0.33 (0.29*)
Area (percentage per 60 years)
Indo-Pacific
 37.3 (2.99)
 35.3 (2.83)
 67.1
 2.0
 12.5
 32.2 (27.4*)
Indian
 38.4 (2.1)
 36.4 (1.99)
 78.77
 2.1
 18.3
 51.2 (44.3*)
Pacific
 36.7 (2.36)
 34.7 (2.23)
 61.0
 2.0
 15.6
 21.6 (18.0*)
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trast is critical to reliable futureprojectionsof changes in global and regional
atmospheric circulation and hydrological cycle (1–4, 6, 7, 10, 32–34, 38).
MATERIALS AND METHODS

Data processing
We used SST from HadISST (Hadley Centre sea ice and SST) (39) v1.1
and ERSST (Extended Reconstructed SST) (40) v3b data sets for the
period 1953–2012 to calculate properties of the IPWP (for example,
intensity and area). The area enclosed by the 28°C isotherm for the
Indo-Pacific sector between 25°S to 25°N and 40°E to 130°W was ob-
tained using the monthly data. The mean seasonal cycle of intensity and
area calculated for 1953–2012 was removed to obtain monthly anomaly
information. Annual mean anomalies were constructed for analysis
and comparison with model simulations. We assessed the relationship
Weller et al. Sci. Adv. 2016; 2 : e1501719 1 July 2016
between warm pool properties (SST intensity and area greater than 28°C)
and rainfall in the satellite era (1979–2012) with GPCP (Global Precip-
itation Climatology Project) monthly precipitation analysis (41) data.

We used 42 CMIP5 (18) models forced with historical anthropo-
genic and natural forcings (1953–2005) and future greenhouse gases
under emission scenario of Representative Concentration Pathway
(RCP) 4.5 (2006–2012), covering a 60-year period (table S1). The cli-
matological size of the IPWP (area bounded by the 28°C isotherm)
was used to select a subset of models. Of the 42 models, 29 satisfy
the criterion whereby the size of the model’s climatological IPWP lies
within the observed average ± 1 SD of the observed interannual var-
iability (fig. S2). The selected models yield a mean IPWP area of 46.0 ×
1012 m2, close to the observed area in HadISST of 43.9 × 1012 m2 (table
S2). In total, 80 simulations of the historical period were used, referred
to as the ALL forcing experiment. Individual forcing simulations using
greenhouse gases only (GHG-only) and external natural forcing only
Fig. 3. Results from optimal detection analysis of warm pool intensity and area with corresponding attributable trends. (A to C) Scaling factors of
warm pool SST (A), area (B), and combined SST and area anomalies (C) for single-signals of anthropogenic plus natural external (ALL; green), greenhouse gas
only (GHG; red), anthropogenic (ANT; orange), and natural external only (NAT; blue) forcings (left), and for two signals of ANT (x axis) andNAT (y axis) (center).
In two-signal panels, dark,medium, and light colors indicate the Indo-Pacific, Indian, andPacificwarmpools, respectively. Best estimates (data points) and 5 to
95% Cls (error bars) of scaling factors are displayed, and the 5 to 95% joint confidence for two signals are represented by ellipses. Detectable response to an
individual forcing occurs when scaling factors are significantly greater than zero. Consistency between observed and simulated responses is determined
when scaling factors are not significantly different from unity. Also shown in corresponding bar graphs (right) of (A) and (B) are ANT- and NAT-attributable
intensity and area trends (bar and 5 to 95% CI) from two-signal analysis (center) compared to observed trends (horizontal solid lines). The right panel of (C)
compares the detection strength (mean and 5 to 95% CI) of the multimodel fingerprint of ANT in model runs (orange) and observations (black).
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(NAT-only) were obtained from the selected models (if available), with
a total of 25 and 29 simulations, respectively.

All model outputs were regridded to a common 1° × 1° latitude/
longitude grid, then ensemble means were first calculated for individual
models, and multimodel means were obtained by taking arithmetic
averages of the model-specific ensemble means, giving equal weight to
each model when constructing multimodel means. We estimated the
anthropogenic forced (ANT) signal as the difference between ALL and
NAT under the assumption of linearly additive responses to the external
forcings. Preindustrial control (CTL) simulations (19,800 years, which
provided 333 nonoverlapping 60-year chunks in total) from all available
models were used to estimate the characteristics of model unforced in-
ternal climate variability (Table 1) to increase number of independent
noise data, which helps reduce sampling uncertainty in covariance es-
timation of the internal climate variability (42). Using CTL simula-
tions from the 29 selected models did not affect main results.

Detection method
To compare observed andmodeled warm pool intensity and area anomaly
time series, an optimal fingerprinting technique (23) was used. Observa-
tions (y) were regressed onto multimodel mean response patterns (X,
fingerprints of ALL, ANT, GHG, and NAT) such that y = (X − n)b + e.
Here, regression coefficients b (or scaling factors) are obtained by the
total least squares method, n represents the component of X due to
internal variability that remains after multimodel averaging, and e repre-
sents the residual variability that is generated internally in the climate
system. The variance-covariance matrix of e is estimated from pre-
industrial control (CTL) simulations, and that of n is taken to be propor-
tional to the variance-covariance matrix of e, where the constant of
proportionality reflects the methods used to calculate the multimodel
ensemble response patterns. We conducted two regression analyses.
(i) Single-signal analyses were performed by linearly regressing obser-
vations onto single (ALL, ANT, GHG, or NAT) fingerprints to examine
whether the signal considered is present in the observed changes. (ii) A
two-signal analysis was undertaken whereby observations were regressed
onto ANT and NAT simultaneously. This allows an examination of
whether ANT and NAT are jointly detected and whether the influence
of ANT is separable from that of NAT and internal variability in the
observations. We divided 60-year chunks of CTL simulations into two
sets (116 chunks each) for the optimal fingerprinting analysis. The first
set was used to obtain best estimates of b, and the other set was used to
estimate the 5 to 95% uncertainty range for b and also to carry out a
standard residual consistency test (23, 43). This test offers a convenient
method to check whether model-simulated internal variance is con-
sistent with observational residual variance. Because the key aspect of this
study was on long-term variability of warm pool intensity and area
changes, we calculated 5-year mean time series of anomalies to reduce
noise on interannual time scales. Therefore, 12-dimensional data vectors
of observations and model simulations were obtained. Because data vec-
tors have low dimension compared to the number of chunks of CTL
simulations available for covariance matrix estimation (12 dimensions
versus 115 chunks for each of the two covariance matrix estimates), we
did not apply further dimension reduction, such as empirical orthogonal
function truncations (43).

We assessed the sensitivity of different model samples to forcing
signals and optimal fingerprinting analysis by using six models that
had ALL, GHG, and NAT simulations. This evaluation also allowed
an assessment of the sensitivity of the calculation of the anthropogenic
Weller et al. Sci. Adv. 2016; 2 : e1501719 1 July 2016
forcing as the difference between ALL and NAT to the use of multi-
model means from different samples of models. The results were
found to be robust regardless of model samples used (compare Figs.
2 and 3 with figs. S10 and S11). For example, long-term trends (fig.
S10) and scaling factors from optimal fingerprinting results (fig. S11)
were found to be robust to the use of different multimodel ensembles.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/7/e1501719/DC1
fig. S1. Relationship of observed and simulated SST trends in the Indo-Pacific region with
global mean temperatures during 1953–2012.
fig. S2. Simulated IPWP area and intensity.
fig. S3. Relationships between warm pool intensity and area.
fig. S4. Time series of tropical ocean and warm pool intensity and zonal gradient during 1953–
2012.
fig. S5. Sensitivity of observed SST trends and warm pool expansion over the Indo-Pacific
during 1953–2012 to data set.
fig. S6. Observed rainfall anomalies associated with warm pool intensity and area variations.
fig. S7. Observed rainfall trend during the satellite era and intermodel relationship between
zonal contrast of warm pool expansion and Pacific decadal variability.
fig. S8. Simulated rainfall trends from two groups of CMIP5 models and their difference.
fig. S9. Intermodel relationships between trends in convection and the IPWP.
fig. S10. Sensitivity of simulated warm pool intensity and area anomalies to model samples.
fig. S11. Sensitivity of optimal detection results to model samples.
table S1. List of CMIP5 model simulations used in this study.
table S2. Performance of 42 CMIP5 models integrated with observed time-evolving changes in
anthropogenic and natural forcings.
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