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Analysis of Variance 

Abstract 

Many modern climate experiments consist of multiple General Circulation 

Model (GCM) integrations. Many experiments also contain climate integrations 

in which a climate equilibrium is not obtained for a considerable period of 

time, or in which the mean state slowly evolves with time in response to 

slowly changing external conditions (such as the concentration of CO
2

, In this 

paper we describe some relatively simple statistical techniques which test for 

the presence of trend and take its effects into account when studying 

simulated inter-annual variability. The limitations of these methods, the 

assumptions which are implicit in their use, and techniques for developing 

tests of hypothesis are all discussed. 
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1. Introduction 

The purpose of this paper is to describe a simple statistical frameHork 

Hithin Hhich it is possible to analyze several related cl imate simulations on 

inter-annual time scales. There is a need for such a formal structure because 

climate experiments Hhich consist of several related General Circulation Model 

(GCM) integrations are becoming relatively common. Many coupled 

atmosphere/ocean GCM experiments have already been reported in the literature 

(Manabe and Bryan, 1969; Manabe, et al., 1975, 1979; Washington, et al., 1980; 

Gates, et al., 1985) and many are planned or in progress. Also, many El Nino 

Southern Oscillation (ENSO) and enhanced CO
2 

experiments have already been 

conducted or are in the planning or execution phase. The design of such 

experiments invariably involves one or more control runs Hith uncoupled 

atmospheric GeM's as Hell as one or more experimental runs involving a coupled 

ocean (and perhaps cryosphere) and/or enhanced concentrations of CO2 , 

One feature of the proposed statistical frameHork is that it takes the 

possibility of sloHly evolving trends in the analyzed climates into account. 

Such trends are apparent in some coupled atmosphere/ocean climate simulations 

and are to be expected in CO
2 

experiments in Hhich the atmospheric composition 

is prescribed as a function of time. In the case of coupled atmosphere/ocean 

climate simulations, trends sometimes occur due to the long time require to 

obtain an equil ibrium of the simulated climate system. For example, many 

coupled ocean/atmosphere cl imate simulat ions are conducted by bringing the 

component parts of the coupled system into some sort of equilibrium Hith a set 

of prescribed boundary conditions Hhich are presumed to be representative of 

the mean boundary conditions Hhen the systems are alloHed to interact. When 

the individual equilibria have been obtained the coupling mechanism is turned 
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on and the entire system is allowed to come into its o~m equilibrium. 

Depending upon the detai Is of the particular system, this may take a 

considerable period of time. At some point along the path to equilibrium the 

components of the simulated system begin to interact in a realistic ~~y and to 

simulate variation about the (still transient) mean state in a realistic way. 

At that point it becomes possible, and may be desirable, to analyze the 

variation simulated about the still transient mean. 

We will describe statistical techniques for the analysis of simulated 

climate variability which are not invalidated by the presence of a gradual 

drift through a sequence of transient mean states. It is assumed that 

variation about this trend is representative of that which eventually occurs 

about the new equilibrium to which the simulated climate system is converging. 

This drift, or trend, will be represented in a polynomial manner for the sake 

of convenience. Such a representation has the advantages that it is relatively 

flexible in its form and that it is linear in the unknown trend coefficients. 

The latter is an important logistical consideration as it greatly simplifies 

the problem of coefficient estimation. While the representation of trend by a 

decaying exponential, a damped sinusoid or some other function which is 

non-linear in its unknown coefficients may be more elegant and aesthetically 

pleasing, coefficient estimation is not straight forward in such cases. This 

is particularly so in climate experiments because non-linear minimization 

procedures (which are necessary for coefficient estimation when trend models 

are non-linear in their coefficients) must be applied repeatedly for every 

field considered and at every grid point in the field. 

In the discussion that follows we will have the following basic 

experimental design in mind. There will be a control climate simulation with 
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an atmospheric GCM or perhaps a reference coupled atmosphere/ocean GCM. In 

addition, there Hill be one or more experimental climate simulations Hith 

perturbed climate models (such as a couple atmosphere/ocean model or a model 

in Hhich CO
2 

concentrations are increased - perhaps gradually). The purpose of 

the experiment is to study the effects of the perturbations on the simulated 

mean state and on the inter-annual variabi li ty of the simulated cl imate 

system. Note that the techniques Hhich Hill be prescribed are not particular 

to simulated climate data. In fact, one may often Hant to include observed 

climate data as one of the control or experimental climate realizations. 

In addition to simple questions regarding changes in means and inter-annual 

variance, there are also some additional questions Hhich are of interest in 

the simulation of climate systems Hhich can be addressed Hithin the 

statistical frameHork described beloH. First, do the simulated climates 

display trends to neH equilibria, perhaps as a result of coupling (Hith an 

oceanic GeM) or gradual presribed changes in atmospheric composition. The 

anSHer to this question fundamentally affects the analysis techniques Hhich 

are used to anSHer subsequent questions. The form of the fitted trend model 

provides information about Hhether a simulated system has come to an 

equilibrium or the rate at Hhich this is occurring. 

Secondly, do the climate simulations Hhich comprise the climate experiment 

display "potentially predictable" is the sense of Madden (1976) or Trenberth 

(1985). That is, Hithin a particular climate simulation, is there more 

non-systematic variation about the trend on time scales of seasons or years 

than that Hhich is a consequence of simple day-to-day variation alone. 
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Third, i£ such tpansient "signals" ape simulated in several o£ the climate 

simulations, are they mope or less £requent and/or more or less intense in one 

system than in another? Is the presence o£ such signals associated Hith 

enhanced inter-annual variabi 1 i ty? The anSHers to these questions provide 

in£ormation about the relative importance of the atmosphere's internal 

dynamics and external forcing in the predictability of climate and the ef£ects 

of boundary interactions on climate predictability. Recent Hork by ZHiers 

(1987) Hith the Canadian Climate Center (CCC) Atmospheric General Circulation 

Model (AGCM) suggests that the atmosphere's internal dynamics alone may 

generate potentially predictable signals on seasonal and inter-annual time 

scales. 

Statistical tests Hhich attempt to anSHer some of these questions for a 

collection of related climate simulations Hill be described in the sections 

that follow. As note above, careful attention will be paid to the statistical 

assumptions which are implicit in these statistical procedures (and which are 

commonly overlooked). These assumptions (regarding, £01' example, the 

independence of cl imate realizations) comprise the basic framework within 

which signi£icance is assessed. The judgment of whether an outcome o£ an 

experiment is significant is made relative to a set of rigid and artificial 

statistical standards which are derived from the assumptions (1. e., the 

complete statistical model) implicit in the procedure used to assess 

significance. The caveat that the assumed statistical model does not match 

reality must always be borne in mind. 

A second point which is important for the interpretation of results is that 

all the procedures described here are univariate statistical procedures which 

must be applied to individual cl imate variables real ized at a single grid 
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point or as a single expansion function coefficient. Difficulties with 

interpretation of a field of test results relating to its correlation 

structure as discussed by Livezey and Chen (1983), Storch (1982) and others 

must therefore be taken into account. 

A final point to make is that the techniques described are not being 

proposed in a vacuum. They evolve from experience gained analysing the results 

of a recent Tropical-Ocean Global-Atmosphere (TOGA) experiment conducted at 

the Max Planck Institute for Meteorology in Hamburg. Preliminary results of 

the experiment are described by Latif and Biercamp (1987) and Zwiers and 

Storch (1987). A full report of the experiment is in preparation. 

The techniques which are proposed below are extensions of standard analysis 

of variance (ANOVA) techniques (see for example, Sachs, 1982). ANOVA 

techniques applied in the time domain have been employed in the analysis of 

observed and simulated climate variability for a considerable period of time 

now. The idea that a time domain ANaYA might be a useful way in which to study 

the "potent ial predictabi li ty" of climate systems was first suggested by Jones 

(1975, 1976) and subsequently applied by Madden (1976), Madden and Shea 

(1978), Shukla and Gutzler (1983), Trenberth (1985), Zwiers(1987) and others. 

Madden (1983), Shukla (1983), Trenberth (1984a,b), and Zwiers (1987) discuss 

the statistical methodology used in such studies in detail. The methodology 

will be reviewed briefly in Section 2. Extensions of the methodology to 

systems displaying a climate trend and to groups of climate simUlations are 

described in Section 3. The paper is concluded with a short discussion in 

Section 4. 
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2. Potential Predictability Studies 

In a "potential predictability" study, variation observed or simulated in a 

particular season is partitioned into two components: inter-annual variability 

and intra-seasonal variability. The purpose of a "potential predictability" 

study is to determine whether inter-annual variance, either simulated or 

observed, is greater than would be induced by simple "day-to-day" fluctuations 

in the observed field. The excess variability, if it exists, is potentially 

predictable in the sense that it is not the consequence of short time scale 

"noise" and therefore may be predictable. 

The methods which are used in potential predictabil ity studies appear to 

quite different externally; studies have been carried out both in the 

"frequency domain" (Zwiers, 1987; Madden, 1976) and the "time domain" 

(Trenberth, 1985). They are in fact very similar and consist of a few basic 

steps. In all studies it is recognized that the observed time series is not 

stationary in the mean, even within seasons, and thus as a first step the 

annual cycle of the mean is estimated and subtracted from the observations. 

Some workers have also estimated the annual cycle of the standard deviation 

and scaled the observed time series with this estimate (Madden, 1976; Zwiers, 

1987). The resulting time series are presumed to be approximately stationary, 

at least within seasons. 

The second step is to compute seasonal (or sometimes monthly) means and 

corresponding inter-annual variances. The third step is to infer these same 

inter-annual variances from the observed intra-seasonal variation in the 

transformed time series. This is done by noting that the variance of a time 

average is given by 
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(1) 
2 -cr (x) ·f (A)dA 

xx 

7 

where A is frequency in radians per observing interval, f (A) is the spectral xx 

density funct ion of the transformed time series and n is the length of a 

season expressed in observing intervals. Equivalently 

(2) 
2 -cr (x) = ! { C (0) + 2 xx 

n L (1-T/n) C (T)} 
xx 

where C (T) represents the auto-covariance function of the transformed time 
xx 

series. 

Calculations are done in the "frequency domain" if the variance of the 

seasonal mean is estimated using expression (1). In this case the spectral 

density function f (A) is estimated from fluctations observed within a season xx 

and substituted into (1) to estimate the variance of the seasonal mean. This 

is repeated for each, say December, January, February (DJF), season in the 

observed time series, and the resulting collection of estimates is averaged to 

form a pooled estimate of the variance of the time average derived only from 

intra-seasonal variation. 

The periodogram, I (A), which is given by xx 

(3) Ix~A) = I [exp( iAt)·X t I /2rrn 

t=l 

is frequently used to estimate the spectral density function within a 
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particular season. The periodogram does not give a useful estimate of f (0) 
xx 

because the periodogram is proport ional to the square of the mean of the 

transformed time series at zero frequency. Hence f (0) is estimated by xx 

extrapolating the periodogram ordinate at frequency 1/2rrn to the origin. 

Madden (1976) calls this the Low Frequency White Noise extrapolation of the 

periodogram and justifies its use in the context of intra-seasonal variation 

which behaves as a red noise process. Such an extrapolation is in fact 

reasonable regardless of the stochastic character of intra-seasonal variation, 

as long as it behaves as a stationary, ergodic stochastic process, because all 

such processes have a spectral density function with zero slope at the origin. 

That is, at low enough frequency (long enough time scale) all stationary 

ergodic stochastic processes behave as white noise processes. 

When calculations are done in the "time domain" the variance of the 

seasonal mean is estimated using expression (2). In this case the 

auto-covariance function C (~) is estimated from intra-seasonal variation and 
xx 

the estimate is substituted into (2) to estimate the variance of the time 

average. Trenberth (1984a,b) discusses various aspects of auto-covariance 

function estimation which are pertinent to potential predictability studies. 

With either approach the fourth and last step is to form the ratio of the 

observed inter-annual variance with the estimate of inter-annual variance 

derived from intra-seasonal fluctuations alone, and to compare this ratio with 

crit ical values derived from an appropriate F-distri but ion. In the case of 

calculations performed in the frequency domain, appropriate critical values 

can be determined easily because a relatively informative asymptotic 

statistical theory is available (see Zwiers, 1987). On the other hand, 

determining critical values for the F-ratio computed in the time-domain 
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calculation is more difficult because the relevant asymptotic statistical 

theory is less informative. The same sorts of difficulties described by 

Thiebaux and Zl1iers (1984) in connection l1ith difference of means tests also 

occur here. 

Although not explicitly stated in most potential predictability stUdies, a 

simple statistical model is implicit in the sequence of calculations described 

above. This model is given by 

(4) Yjt = M + OJ + Cjt ' j=l, ... ,m (years), t=l, ... ,n (days) 

I1here index j runs over years and index t runs over days within a season. The 

coefficients 0. are assumed to be independent Gaussian random variables with 
J 

2 mean 0 and variance 0" (e). They represent the possibly predictable transient 

climate signal. The time series {cjt ,t=l, • •• J n} are assumed to be 

independent realizations of a stationary stochastic process and represent 

intra-seasonal variation. 

If we take time averages in (4) l1e see that 

(6) Yj. = M + OJ + c j . ' J=l, ... ,m. 

Here and elsel1here l1e use the notation commonly employed in the statistical 

11 terat ure to represent means: an overbar indicates an average of some sort 

and the subscript(s) over I1hich the average is computed is(are) indicated by a 

dotes). From (6) we see that the variance of the seasonal mean is given by 

(6 ) 
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This quantity is estimated directly by the inter-annual variance cf the 

seascnal mean. The third step of the four step procedure described above 

results in a statistically independent estimate of the climate noise ~2(E. ). 
J. 

Thus the ratio of the two variance estimates will be larger than one if the 

variance ~2(C) due to the climate signal is different from zero. The ratio 

will be equal to one if there is no climate signal. The F-test described above 

looks for evidence that the ratio is greater than one. 

To unravel the assumptions which are implicit in the F-test for potential 

predictabilty, it is useful to express model (4) somewhat differently. 

Consider time series 

where i simply indexes days and {oi} and {c
i
} represent statistically 

independent stationary stochastic processes. We could think of these two 

processes as independent red noise processes with different "decorrelation" 

times, amounts of persistence, or predictability. Equivalently, we could think 

of the spectral density function of {y.} as the sum of two spectral density 
1 

functions, the first having greater curvature near the origin and dropping to 

zero faster than the second. Now suppose that process {o.} has a spectral 
1 

densi ty function which is essentially zero at frequencies greater than one 

cycle per season and is essentially flat at frequencies less than one cycle 

per year. Then (7) reduces to (4) if (7) is sampled daily for an n-day season 

once per year for m years. We see from this that there are several assumptions 

implicit in the F-test. These include: 
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0) the climate signal and climate noise are stochastically independent. 

In particular, the stochastic characteristics of climate noise are unaffected 

by the state of the climate signal, something which is unlikely to be true, 

and there are no noise-to-signal feedbacks. 

o i) the cl imate signal contains no possibly predictable components at 

frequencies greater than one cycle per season. This automatically relegates 

phenomena such as the 30-60 day wave to climate noise, and dictates a fair 

degree of smoothness for the climate signal. 

o i i) the climate signal does not persist to any great extent from one 

year to the next. 

These observations regarding the 1 imitat ions of potential predictabi li ty 

studies are not new: they have been made in various forms by Zwiers (1987), 

Trenberth (1985), Shukla (1983) and others. But stating the limitations in 

connection with specific statistical models such as (4) or (7) clarifies them 

considerably. Unfortunately the limitations noted above cannot easily be 

overcome. It would be necessary to construct statistical models which 

anticipate the form of the climate signal and the manner in which the 

presumably nonlinear interaction between signal and noise occurs. However, 

even with these limitations, simple models such as (4) and its extensions 

described below are very useful for analysing variability simulated by climate 

models. 
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3. Variability in Related Climate Simulations 

Implicit in the techniques and models described above is the assumption 

that the simulated cl imate is stationary. This includes the assumption that 

that there is no trend or gradual transition to a new equilibrium in the 

simulated climate. With many systems this assumption is not satisfied and 

statistical techniques must be employed which take trend into account. One can 

envision at least two kinds of experiments in which this might be a problem: a 

single long integration of a coupled atmosphere/ocean climate model, and a 

pair of long integrations; one being a control climate simUlation with an AGCM 

and the second being an experimental climate simulation with a coupled or 

otherwise perturbed GCM. 
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3.1 A single simulation with evolving mean state 

We begin by considering a single long integration of a climate system. A 

suitable modification of (4) which takes the possibility of trend into account 

might have the form 

(8) Yjt = Il(j) + OJ + e jt , j=1, ... ,m (years), t=1, ... ,n (days) 

where the long term mean Il(j) is now a slowly varying deterministic function 

of time. The word "deterministic" is used in the sense that if statistically 

independent realizations could be obtained of the same climate simulation 

(perhaps by repeating the run from randomly perturbed initial conditions) the 

result would be a single ensemble of climate simulation realizations with time 

dependent ensemble mean Il(j). As noted in section 1, estimation and inference 

problems remain fairly simple as long as Il(j) has a form which is linear in 

its parameters. For most purposes a polynominal should be adequate. Thus we 

have 

(9) ,m (years), 

t=1, ,n (days). 

The trend is represented by the k'th degree polynomial a
1Pl(j) + .•. + akPk(j) 

where Pl' P2' ... , Pk are orthonormal polynomials of degree 1, 2, ... , k 

respectively defined on integers j=1, ... ,m; 11 represents the m-year seasonal 

mean; coefficients oJ represent the transient climate signal and are assumed 

to be independent Gaussian random variables with mean 0 and variance ,,2(C); 

and time series {e
jt

, t=l, .. . ,n} are independent realizations of a stationary 

stochastic process representing intra-seasonal fluctuations. In addition to 
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the three assumptions stated above, there are implicit in this model 

assumptions that the characteristics of the climate signal and noise are 

independent of the trend and that there is no interaction between the trend 

and other components of the climate. Again, our intuition tells us that this 

cannot be entirely the case. As suggested in Section 1, a certain amount of 

good judgment is required to avoid analyzing data obtained too soon after 

climate simulation is initiated. 

3.1.1 A Partition o£ Observed Variation 

Development of tests of hypotheses concerning the presence of trend and a 

climate signal are straight forward once a linear statistical model such as 

(9) has been adopted. We begin by partitioning total variability into 

inter-annual and intra-seasonal components. We have 

(10) - y )2 = n.{ [(y _ 
j=l J. 

= n·SSA + SSE. 

Total inter-annual variability may be further partitioned as 

(11 ) 

where 

(12) 

k A2 
SSA = L a e + SSR = SSD + SSR 

e=l 

m 
~ y. 'p,(j), 

J~l J. ~ 
and SSR = SSA - SSD. 
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Each squar'ed coefIicient in (11) has one degr'ee of fr'eedom (df), and the 

r'esidual sum of squar'es SSR has m-k-1 df. With the assumptions above all k+l 

components of SSA ar'e mutually statistically independent. Taking expectations 

using model (9) we see that 

'2 2 2 2 -E(ae) = at + ~ (C) + ~ (e. ) 
J. 

k 2 [2 2 - ) (13) E(SSD) = [ a e + k· ~ (C) + ~ (e. ) 
e=1 J. 

E(SSR) (m-k-1)' [ ~2(C) + 2 - ] = ~ (e. ) 
J. 

3.1.2 A Test for Trend 

Most of the information necessary to construct tests of hypotheses 

concer'ning tr'end and potential pr'edictability is contained in (13). For' 

example, to test whether' Or' not there is a significant tr'end in the coupled 

simulation the suitable null and alter'nate hypotheses ar'e 

(14) vs. Ha' at least one ae * 0 

and an appr'opr'iate test statistic is 

(15) F = { SSD/k } / { SSRI(m-k-1) }. 

The numer'ator of the test statistic is chosen by noting that SSD is the only 

ter'm in the par'tition of SSA whose expectation involves the par'ameter's being 

tested. The expectation of the numerator is { t a~ / k } + ~2(C) + ~2(E. ) . 
e=1 J. 

The denominator of the test statistic is chosen by looking for' a mean sum of 
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squares which is statistically independent of the numerator and estimates that 

port ion of the expectat ion of the numerator which is not affected by the 

parameters under test regardless of whether or not the null hypothesis is 

true. In this case the denominator must be chosen to have expectation ~2(C) + 

2 -
~ (c. ) 

J. 
When the null hypothesis is true, both components of the ratio 

estimate the same value. When it is false, the numerator estimates a quantity 

greater than that of the denominator and thus the null hypothesis is rejected 

when F is unusually large. The assumptions which have been made ensure that F 

has Fisher's F-distri button when H is true, and thus H is tested by 
o 0 

comparing F with the upper quantiles o£ the F-distrlbution with k and m-k-l 

degrees of £reedom. Similarly, the significance of the fth degree component of 

'2 
the trend can be determined by comparing ae!{SSR/(m-k-l)} with upper tail 

cd tical values from the F-distribution with 1 and m-k-1 df. 

3.1.3 A Test £or Potential Predictability 

To test for potential predictability taking trend into account the 

appropriate hypotheses are 

(16) vs. 

and the appropriate test statistic is 

(17) F = {SSR/(m-k-1)} / ~2(ej.) 

where ~2(e. ) is a frequency- or time-domain estimate of ~2(e. ), the variance 
J. J. 

due to climate noise. As above, both components o£ this ratio estimate the 

same quantity when H is true, and the numerator estimates a quantity greater 
o 
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than that estimated by the denominator Hhen H is false. The assumptions and 
o 

the appropriate asymptotic theory can be used to shoH that the distribution of 

F is approximately Fisher's F-distribution Hhen H is true. Thus H is 
o 0 

rejected Hhen F is greater than the appropriate upper tai 1 crit ical values 

determined from the approximating F-distribution. 

3.1.4 Tests of the Mean and Variance 

It is also a straight foreHard matter to test that the simulated climate 

2 has an apriori specified inter-annual variance, say ~I' The appropriate null 

and alternate hypotheses are 

(18) 
? ? -

~~(C) + ~~(c. ) 
J. 

vs. 

and the appropriate test statistic is 

(19) 
2 

X = 
2 

SSR / ~I 

When the null hypothesis is true this statistic has a Chi-squared distribution 

Hith m-k-1 df and thus the test is conducted by comparing the value of the 

test statistic Hith upper and lOHer critical values of this distribution. 

It is a someHhat less straight foreHard matter to test hypotheses 

concerning the long term mean because (i) statistical model (9) takes into 

account the possibility that the mean can change as a function of time; and 

(ii) it has done this by assuming, for the sake of mathematical and 

computational convenience, that the mean changes as a polynomial in time. This 

effectively precludes us from asking questions regarding the equilibrium, or 
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asymptotic value of the mean unless we are willing to assume that an 

equilibrium has been obtained during the integration. We will test 

(20) H ." -" o' "equil-"o vs. 

where l1equil represents the equilibrium mean by assuming that 

for some 8, 

given by 

(21) 

l";s";m. With this assumption an unbiased estimator of 11 '1 is eqUl 

m 
=11+.[ 

J=s 

, , 

l ap (j) + ... + 
1 1 )/(m-s+1) 

It can be shown that the variance of this estimator is given by 

(22) 2 - } + IY (e j.) . 

It follows that the appropriate statistic for testing (20) is 

(23) 
m 

lhu) )2} SSR ]1/2 
/ (m-s+l) '(m k 1) 

j=s 

which is distributed as a Student's t random variable with (m-k-l) df when the 

null hypothesis is true. The test is conducted by comparing (23) with the 

extreme quantiles of the appropriate t-distribution. 
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3.2 Paired simulations 

The analysis of the previous section illustrates the manner in which trend 

might be taken into account in climate simulations, and the manner in which 

statistical tests are developed. The analysis was conducted in the context of 

a single simulation. However, one suspects that in most cases there wi II be 

related control and experimental simulations which may be profitably analyzed 

simultaneously. The simple one-way analysis of variance model described above 

can be expanded into a two-way model which employs information from several 

integrations. This expanded model provides a framework for more powerful tests 

of potential predictability in individual climates than could be obtained if 

each cl imate was regarded separately. It also provides the framework within 

which it is possible to develop several other tests including comparisons of 

means, inter-annual variance and climate noise. 

An appropriate 2-way model might have the form 

k
i 

(24) YiJt = M + a i + L ait'Pit(j) + 0ij + 8 ijt ' i=l, ... ,I (simulations) 

t=l 

j=l, ,m
i 

(years) 

t=l, ,n (days) 

where i designates a climate simulation, j runs over mi years within a 

simulation, and t runs over n days within a season. In this model coefficients 

a
i 

represent a deterministic simulation effect after trends in the individual 

cl imates have been taken into account. When there is no trend the ai's 

represent differences between the overall mean M and the individual climate 
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k
i 

means. The term L aie"Pit(j) is a kith degree polynomial representation of 

t=l 

trend in simulation i where Pit(j) are tth degree orthonormal polynomials 

defined on integers j=l, ... , mi' A trend in the control simulation might, for 

example, reflect the gradual loss of mass which is experienced in some climate 

models or gradual changes in evaporation and radiation which occur over land 

areas in models with interactive soil hydrology. Terms 0ij represent the 

transient climate signal and are assumed to be independent Gaussian random 

2 variables with mean 0 arid variance ~ (C
i

). 

Time series {C ijt , t=l, ... ,n} represent intra-seasonal variations in the 

simulations. It is assumed that they are independent realizations of the same 

stationary stochastic process for a.ll i a.nd j, In other words, it is assumed 

that all climates behave in the same way at short time scales. This is not an 

unreasonable assumption unless, for example, a significant downward trend in 

simulated tropical sea surface temperature results in a more closely 

constrained and less energetic atmospheric simulation. In any case, this 

assumption can be checked by fitting model (9) separately for each simulation 

and then comparing estimates of the variance due to climate noise. This 

assumption provides the only connection in (24) between the simulations. The 

advantage of making this assumption is that subsequent tests for potential 

predictability will be more powerful than those available when (9) is applied 

to each simulation separately. This is because the estimate of variance due to 

climate noise will be based on information derived from all simulations. 
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3.2.1 Partition of Variation 

Hith (24) it is possible to answer questions about equality of control and 

experimental means, trend, potential predictability, and whether it is present 

to same degree in all climates. As with (9), the development of statistcal 

tests begins with a partitioning of the total variation in the simulations. 

First the total variation is partitioned as follows into two terms: (1) 

inter-simulation plus inter-annual variation; and (iil intra-seasonal 

variation. 

I 
mi n 

)2 (25) [ [ [ (Yijt - y 

i=1 j=1 t=1 

I m. 

{t 
m. 

n.{ 
1 

)2 } 
1 n 

- 2 } = [ [ (y .. - y + [ [ (Yijt - y ij. ) lJ. 
i=1 j=1 i=1 j=1 t=1 

= n·SSAB + SSE. 

Hith the assumptions which were made above it can be shown that the two 

components of the partition are statistically independent sums of squares. 

Because all intra-seasonal variation is contained wi thin the second term, 

independence of terms also implies that the estimate of the variance due to 

climate noise (a component of the second term) is statistically independent of 

any variation partitioned out of the first sum of squares. The first term is 

further partitioned as 

I I 
m. 

)2 
1 

)2 (26) SSAB = [ mi'(Y, - y + [ [ (y ij. - y. 
1.. 1.. 

i=1 i=1 j=1 

I I 
k. 

I mi kiA r A2 
[ 

lA2 
[ [ { Yij . [ ate'pte(j) = [ nli . <Xi + [ate + - y. 

t=l 
1.. 

i=1 i=1 t=1 i=1 j=1 
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Hhich He Hi 11 Hrite as 

I 
(27) SSAB = SSM + L SSD i + 

i=1 i=1 

Hhere SSM = 

In these expressions 

(28) (Xl" = v. - y 
VI •• 

SSD
i 

= 

and 

and 

m
i 

~i{ y .. 
L IJ. 

j=1 

a it = L YiJ . ·Pit(j)· 

j=1 

22 

k. 
lA 

L ale'Ple(j) 
£=1 

_ y. }2 
1.. 

The first term in (27), SSM, has 1-1 df and reflects differences in climate 

means after trend has been taken into account. The next group of terms, SSD
i

, 

have k. df each and reflect variation due to trend. The last group of terms, 
1 

SSR
i

, have m.-k.-1 df each and are referred to as residual sums of squares. It 
1 1 

can be shown that all components of this partition are statistically 

independent. Taking expectations using model (24) we find that 

E( 
A2 2 2 2 -
ale = ale + cr (C.) +cr(E.

J
) 

1 1 . 

k. 
1 2 

ki ' [ cr
2

(Ci ) 
2 - ) (29) E( SSD. = L ale + + cr (E

iJ
. ) 

1 

£=1 

E( SSR
i 

) (m. -k. -1). [ cr2 (C.) 
2 - ) = + cr (E ij .) 1 1 1 
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3.2.2 Tests Concerning Trend 

The expressions above provide most of the information necessary to 

construct tests of various hypotheses. In this subsection we will describe 

tests which address questions regarding the evolution of the mean states of 

the simulated climates. In all cases tests are constructed in the same manner 

as is illustrated in Section 3.1. 

To test for a significant trend in climate ~ the appropriate hypotheses are 

(30) Ho' a ie ' t=l, .. . ,k i vs. Ha' a ie * 0 for at least one e. 

The appropriate test statistic is 

When the null hypothesis is true and all assumptions are satisfied (31) has an 

F-distribution with k. and m.-k i -1 degrees of freedom. The test is conducted 
1 1 

by comparing (31) with the upper quantiles of this distribution. To test 

whether the l'th degree component of the trend in zero in cl imate 1. we 

} with the upper tail critical values of 

the F-distribution with 1 and mi -ki -1 degrees of freedom. 

To test for equality Q[ the l'th degree components of the trends in a pair 

of climates, say p and q, the appropriate hypotheses are 

(32) H vs. H 
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and the corresponding test statistic is 

(33) (SSR + SSR )/(m +m -k -k -2) } p q p q p q 

This statistic has an F-distribution with 1 and m +m -k -k -2 degrees of 
p q p q 

freedom when the null hypothesis is true and when both climates have the same 

inter-annual variance after trend is taken into account. Again, the test is 

conducted by comparing the test statistic with the upper quantiles of the null 

{

A A 2} distribution. The test statistic is derived by noting that E (ape - aqe ) = 

E{;~e} + E{;!e}· 

To test for equal ity of trends in a pair of climates, say p and q, the 

appropriate hypotheses are 

(34) vs. 

where k is the (common) degree of the fitted trend polynomial. The 

corresponding test statistic is 

(35) F = (SSR + SSR )/(m +m -2k-2) } 
P q P q 

This statistic has an F-distribution with k and m +m -2k-2 df when the null 
p q 

hypothesis is true and when both climates have the same inter-annual variance 

after trend is taken into account. The test is conducted by comparing the test 

statistic with the upper quantiles of the null distribution. An obvious 
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generalization allows one to compare k trend coefficients simultaneously or to 

compare the common trend coefficients in the event that both trend polynomials 

are not of the same degree. 

3.2.3 A Test Concerning the Equality of Means 

We now address the question of the equality of equilibrium means in a pair 

of simulated climates. As in subsection 3.1.4 above, this test is complicated 

somewhat by the fact that one or both of the climates may have a mean which is 

varying in time and that we are using a polynomial representation of this time 

dependency. As in section 3.1.4, we will assume that an equilibrium has been 

obtained obtained in both of the climate simulations, after say sand s p q 

years respectively. An appropriate set of hypotheses for our consideration is 

(36) Ho: ~equil,p = ~equil,q vs. 

With the assumption above, the equilibrium mean of climate p is given by 

/ (m -s +1). 
p p 

An unbiased estimator of this quantity is given by 

~ = y + equil, p p .. 
j=s 

p 

and has variance which is given by 

/ (m -s +1). 
p p 
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If He nOH assume that the tHO climates in question have the same inter-annual 

variance, then it can be shOHn that an appropriate test statistic for (36) is 

given by 

(37 ) T = ( ~eqUil,p - ~eqUil,q ) / S pool 

Hhere 

S~OOI= [ {~p + k ( i~ Ppe(j) 

v p 

k m 
r,q ( r,q 

t=1 j=s 
q 

2 
/ (m -s +1)) }'SSR + 

p P P 

When the null hypothesis is true this statistic has a Student's t-distribution 

Hith (m +m -s -s +2) df. Unless He have apriorl knoHledge about the sign of 
p q P q 

the difference of means the test is conducted by comparing the test statistic 

against both upper and IOHer quantlles of the t-distribution. When such 

information is available, the comparison is made only against only one of 

these quantiles as dictated by the apriori knoHn sign. 

It should be noted that the tests for trend and equality of means do not 

use the connection between the paired coupled and uncoupled simulations. They 

use only information which is contained in the inter-simulation plus 

inter-annual variation sum of squares. These tests can be developed as easily 

by beginning with a separate version of (9) for each climate and making no 
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assumption about a connection between the climates. On the other hand, tests 

of hyptheses which address questions regarding cl imate variabil ity do exploit 

the connection which is assumed in (24). These tests are described next. 

3.2.4 A Test of Potential Predictability 

To test for potential predictability in climate i the appropriate 

hypotheses are 

(38) 

and the appropriate test statistic is 

(39) 
'2 
0' pool 

'2 
where 0' I is a frequency- or time-domain estimate of the variance due to 

poo 
'2 -

climate noise constructed from all the climate simulations. If 0' (e .. ) is an 
IJ. 

estimate of the variance due to climate noise in climate i which has vi df, 

'2 
then 0' I is given by 

poo 

(40) 
'2 
0' 

pool 

I 

= 
I '2 _ 
\' V.·O' (e •. ) I L 1 IJ. 

i=1 

and has LVi 
i=1 

df. When the null hypothesis is true the F-ratio is 

I 
approximately distributed as an F random variable with (m

i 
-k

i 
-1) and L vi 

i=1 

df. The test is conducted by comparing test statistic (39) with the upper 

quantiles of this distribution. 
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3.2.6 Comparision of Climate Noise Estimates 

The test described in the previous subsection makes use of the statistical 

connection which is built into (24) by pooling the individual estimates of the 

variance due to climate noise. It is possible to check that this connection 

(the assumption that the variance due to climate noise is the same in all 

simulations) is valid by conducting yet another F-test to compare estimates of 

the variance due to climate noise in specific pairs of climates. In this case 

the appropriate hypotheses are 

(41) H : 0'2 (;; . ) = 
o PJ. 

2 -
0' (c . ) 

qJ. 
vs. 

and the appropriate test statistic is 

(42) "'2 - "'2 -
F = 0' (c . ) /0' (c . ). 

PJ· qJ. 

When the null hypothesis is true this statistic is approximately 

F-distribution with v and v degrees of freedom. Unlike all previously p q 

described F-tests, the present test is two sided and the null hypothesis 

should be rejected if F is significantly less than or greater than 1. If the 

test is to be conducted at the ~ significance level (42) should be compared 

with both the ~/2 and 1-~12 quantiles of the reference distribution. Most 

tables only give upper tail quantiles for the F distribution. Lower tail 

quantiles can be obtained by using the fact that F = 
Vp,Vq,~/2 

-1 
Fv,v,1-~/2· 

q P 

As well as making comparisons between pairs of estimates of climate noise, 

it is also possible to apply Bartlett's Test (Sachs, 1982) to test the 
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hypothesis that all simulated climates have the same variance due to climate 

noise. 

3.2.7 Comparison of Inter-Annual Variances 

Finally we describe a test concerning the eguality of inter-annual 

variances in a pair of climates. The appropriate hypotheses are 

(43) 

vs. 

The appropriate test statistic is 

2 -
+ cr (" . ) 

qJ. 

cr2 (C ) 
p 

which has an F-distribution with m -k -1 and m -k -1 df when the null 
p p q q 

hypothesis is true. The test should be conducted by comparing (44) with both 

the upper and lower quantlles of this reference distribution because there is 

no apriori reason to suppose that one variance should be larger than the 

other. As in the previous subsection, we may also apply Bartlett's test to 

test the equality of all inter-annual variances simultaneously. 

Note that comparisions of inter-annual variance may be regarded as 

comparisons of potential predictability if it is possible to assume that the 

climates under consideration have the same variance due to climate noise. When 

this is the case, expected differences are due entirely to differences in the 

variance of the transient climate signals, and hence are due to differences in 

potential predictability. 
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4. Discussion 

Several statistical models and tests have been described which may be 

suitable for the study of variability simulated in groups of related climate 

simulations as well as in an individual climate simulation in which the mean 

has time dependent behaviour. The techniques which have been described are an 

extension of the methodology used in potential predictability studies and thus 

suffer from the same limitations. Many assumptions are made implicitly when 

these techniques are used which do not correspond to our knowledge of climate 

system mechanics. These techniques should thus be viewed as tools which can 

help to uncover evidence regarding the climate puzzle, but certainly not as 

final arbiters. 

Statistical procedures are also limited simply by the manner in which they 

operate. Specifically, the null hypothesis is only rejected when there is 

sufficient evidence as measured by some test statistic. Failure to reject the 

null hypothesis does not indicate that it is true; it simply indicates that 

there was not enough evidence to reject the null hypothesis. 

The techniques described above are relatively straight forward extensions 

of ordinary analyses of variance (see Sachs, 1882) which statisticians apply 

every day. The models described above have been used in a specific application 

(Latif and Biercamp, 1887; Zwiers and Storch, 1887) and it is partly the 

purpose of this paper to document those techniques. However, specific 

applications will no doubt require specific models for the analysis of 

variance for which specific tests wi 11 have to be derived. Thus it is also 

partly the purpose of this paper to illustrate by example the derivation of 

statistical tests in analysis of variance models. The principles employed in 
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this paper are universal in such models. 
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