10 research outputs found

    Spatial repellents: from discovery and development to evidence based validation

    Get PDF
    International public health workers are challenged by a burden of arthropod-borne disease that remains elevated despite best efforts in control programmes. With this challenge comes the opportunity to develop novel vector control paradigms to guide product development and programme implementation. The role of vector behaviour modification in disease control was first highlighted several decades ago but has received limited attention within the public health community. This paper presents current evidence highlighting the value of sub-lethal agents, specifically spatial repellents, and their use in global health, and identifies the primary challenges towards establishing a clearly defined and recommended role for spatial repellent products in disease control

    Olfactory regulation of mosquito-host interactions

    No full text
    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven behaviors in so far as it significantly contributes to the ability of these mosquitoes to transmit pathogens that cause diseases such as dengue, yellow fever and most significantly human malaria. Here, we review significant advances in behavioral, physiological and molecular investigations into mosquito host preference, with a particular emphasis on studies that have emerged in the post-genomic era that seek to combine these approaches. (C) 2004 Elsevier Ltd. All rights reserved

    Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae

    No full text
    Heat sensitivity is a sensory modality that plays a critical role in close-range host-seeking behaviors of adult female Anopheles gambiae, the principal Afrotropical vector for human malaria. An essential step in this activity is the ability to discriminate and respond to increases in environmental temperature gradients through the process of peripheral thermoreception. Here, we report on the characterization of the anopheline homolog of the transient receptor potential (TRP) A1/ANKTM1 channel that is consistent with its role as a heat-sensor in host-seeking adult female mosquitoes. We identify a set of distal antennal sensory structures that specifically respond to temperature gradients and express AgTRPA1. Functional characterization of AgTRPA1 in Xenopus oocytes supports its role in the molecular transduction of temperature gradients in An. gambiae, providing a basis for targeting mosquito heat responses as a means toward reducing malaria transmissio

    Genomic organization and characterization of the white locus of the Mediterranean fruitfly Ceratitis capitata.

    No full text

    Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae

    No full text
    Background: Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO2) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. Results: Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO2-responsive and characterized by the coexpression of three receptors that confer CO2 responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. Conclusions: Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gmnbiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria
    corecore