1,990 research outputs found

    A Nonsteady Heat Diffusion Problem with Spherical Symmetry

    Get PDF
    A solution in successive approximations is presented for the heat diffusion across a spherical boundary with radial motion. The approximation procedure converges rapidly provided the temperature variations are appreciable only in a thin layer adjacent to the spherical boundary. An explicit solution for the temperature field is given in the zero order when the temperature at infinity and the temperature gradient at the spherical boundary are specified. The first-order correction for the temperature field may also be found. It may be noted that the requirements for rapid convergence of the approximate solution are satisfied for the particular problem of the growth or collapse of a spherical vapor bubble in a liquid when the translational motion of the bubble is neglected

    Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems

    Full text link
    We introduce a new problem that combines the well known All Pairs Shortest Paths (APSP) problem and the All Pairs Bottleneck Paths (APBP) problem to compute the shortest paths for all pairs of vertices for all possible flow amounts. We call this new problem the All Pairs Shortest Paths for All Flows (APSP-AF) problem. We firstly solve the APSP-AF problem on directed graphs with unit edge costs and real edge capacities in O~(tn(ω+9)/4)=O~(tn2.843)\tilde{O}(\sqrt{t}n^{(\omega+9)/4}) = \tilde{O}(\sqrt{t}n^{2.843}) time, where nn is the number of vertices, tt is the number of distinct edge capacities (flow amounts) and O(nω)<O(n2.373)O(n^{\omega}) < O(n^{2.373}) is the time taken to multiply two nn-by-nn matrices over a ring. Secondly we extend the problem to graphs with positive integer edge costs and present an algorithm with O~(tc(ω+5)/4n(ω+9)/4)=O~(tc1.843n2.843)\tilde{O}(\sqrt{t}c^{(\omega+5)/4}n^{(\omega+9)/4}) = \tilde{O}(\sqrt{t}c^{1.843}n^{2.843}) worst case time complexity, where cc is the upper bound on edge costs

    On the Dynamics of Small Vapor Bubbles in Liquids

    Get PDF
    When a vapor bubble in a liquid changes size, evaporation or condensation of the vapor takes place at the surface of the bubble. Because of the latent heat requirement of evaporation, a change in bubble size must therefore be accompanied by a heat transfer across the bubble wall, such as to cool the surrounding liquid when the bubble grows (or heat it when the bubble becomes smaller). Since the vapor pressure at the bubble wall is determined by the temperature there, the result of a cooling of the liquid is a decrease of the vapor pressure, and this causes a decrease in the rate of bubble growth. A similar effect occurs during the collapse of a bubble which tends to slow down the collapse. In order to obtain a satisfactory theory of the behavior of a vapor bubble in a liquid, these heat transfer effects must be taken into account. In this paper, the equations of motion for a spherical vapor bubble will be derived and applied to the case of a bubble expanding in superheated liquid and a bubble collapsing in liquid below its boiling point. Because of the inclusion of the heat transfer effects, the equations are nonlinear, integro-differential equations. In the case of the collapsing bubble, large temperature variations occur; therefore, tabulated vapor pressure data were used, and the equations of motion were integrated numerically. Analytic solutions are obtainable for the case of the expanding bubble if the period of growth is subdivided into several regimes and the simplifications possible in each regime are utilized. The growth is considered here only during the time that the bubble is small. An asymptotic solution of the equations of motion, valid when the bubble becomes large (i.e. observable), has been presented previously, together with experimental verification. We shall be specifically concerned in the following discussion with the dynamics of vapor bubbles in water. This restriction was made for convenience only, since the theory is applicable without modification to many other liquids

    The Growth of Vapor Bubbles in Superheated Liquids

    Get PDF
    The growth of a vapor bubble in a superheated liquid is controlled by three factors: the inertia of the liquid, the surface tension, and the vapor pressure. As the bubble grows, evaporation takes place at the bubble boundary, and the temperature and vapor pressure in the bubble are thereby decreased. The heat inflow requirement of evaporation, however, depends on the rate of bubble growth, so that the dynamic problem is linked with a heat diffusion problem. Since the heat diffusion problem has been solved, a quantitative formulation of the dynamic problem can be given. A solution for the radius of the vapor bubble as a function of time is obtained which is valid for sufficiently large radius. This asymptotic solution covers the range of physical interest since the radius at which it becomes valid is near the lower limit of experimental observation. It shows the strong effect of heat diffusion on the rate of bubble growth. Comparison of the predicted radius-time behavior is made with experimental observations in superheated water, and very good agreement is found

    Dual-Polarized UWB Antenna Array

    Get PDF

    The tropical shadow-vertex algorithm solves mean payoff games in polynomial time on average

    Full text link
    We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over the tropical semiring (R{},max,+)(\mathbb{R} \cup \{-\infty\}, \max, +). The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical polyhedra, and that its computation reduces to optimal assignment problems through Pl\"ucker relations.Comment: 17 pages, 7 figures, appears in 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part

    Hybrid Beam-Steering OFDM-MIMO Radar: High 3-D Resolution With Reduced Channel Count

    Get PDF
    We report on the realization of a multichannel imaging radar that achieves uniform 2-D cross-range resolution by means of a linear array of a special form of leaky-wave antennas. The presented aperture concept enables a tradeoff between the available range resolution and a reduction in the number of channels required for a given angular resolution. The antenna front end is integrated within a multichannel radar based on stepped-carrier orthogonal frequency-division modulation, and the advantages and challenges specific to this combination are analyzed with respect to signal processing and a newly developed calibration routine. The system concept is fully implemented and verified in the form of a mobile demonstrator capable of soft real-time 3-D processing. By combining radio frequency (RF) components operating in the W-band (85-105 GHz) with the presented aperture, a 3-D resolution of less than 1.5° x 1.5° x 15 cm is demonstrated using only eight transmitters and eight receivers

    Oscillatory enhancement of the squeezing flow of yield stress fluids: A novel experimental result

    Get PDF
    The extrusion of a yield stress fluid from the space between two parallel plates is investigated experimentally. Oscillating the magnitude of the squeezing force about a mean value (F = f[1+αcos(ωt)]) was observed to significantly enhance the flow rate of yield stress fluids, while having no effect on the flow rate of Newtonian fluids. This is a novel result. The enhancement depends on the magnitude of the force, the oscillatory frequency and amplitude, the fluid being squeezed, and the thickness of the fluid layer. Non-dimensional results for the various flow quantities have been presented by using the flow predicted for the constant-force squeezing of a Herschel-Bulkley yield stress fluid as the reference. In the limit of constant-force squeezing, the present experimental results compare very well with those of our earlier theoretical model for this situation (Zwick, Ayyaswamy & Cohen 1996). The results presented in this paper have significance, among many applications, for injection moulding, in the adhesive bonding of microelectronic chips, and in surgical procedures employed in health care
    corecore