329 research outputs found

    Inhibition of the post-translational processing of microvillar hydrolases is associated with a specific decreased expression of sucrase-isomaltase and an increased turnover of glucose in Caco-2 cells treated with monensin

    Get PDF
    AbstractThe biosynthesis and post-translational processing of sucrase-isomaltase and dipeptidylpeptidase IV were studied by L-[35S]methionine labeling, immunoisolation with monoclonal antibodies and SDS-PAGE in post-confluent Caco-2 cells treated with monensin (10 μM, 48 h). In addition to its classical effect on the post-translational processing of both hydrolases, i.e. an inhibition of the conversion of the high-mannose to the complex glycosylated form of the enzymes, monensin was found to have two other effects: a marked decrease of sucrase-isomaltase expression, but not of dipeptidylpeptidase IV; an increased turnover of glucose, as substantiated by increased rates of glucose consumption and lactic acid production and a decreased glycogen content. Whether these two effects are related to the particular differentiation and metabolic status of Caco-2 cells is discussed, as well as a possible role for the drug-induced modifications of glucose turnover on the decreased expression of sucrase-isomaltase

    Monensin inhibits the expression of sucrase-isomaltase in Caco-2 cells at the mRNA level

    Get PDF
    AbstractUsing L-[35S]methionine labeling, SDS-PAGE and Northern blot analysis of sucrase-isomaltase mRNA, two different concentrations of monensin were used to delineate in Caco-2 cells the effect of the drug on the conversion of the high mannose to the complex form of sucrase-isomaltase from its dual effect on the biosynthesis of the enzyme and on the rate of glucose consumption. At 0.1 μM the drug has no effect on the rate of glucose consumption and, although it inhibits the conversion of the high mannose to the complex form of the enzyme, it has no effect on the level of sucrase-isomaltase mRNA and on the amount of neosynthesized enzyme. At 1 μM, in addition to its inhibiting effect on the maturation of the enzyme, monensin provokes concomitantly an increase in the rate of glucose consumption and a decrease in the level of sucrase-isomaltase mRNA and in the amount of neosynthesized enzyme. All these effects are reversible within 48 h after removal of the drug

    Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model

    Get PDF
    The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol Cd/l exposure, and no variation was observed with copper. Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium

    Cancer Chemopreventive Ability of Conjugated Linolenic Acids

    Get PDF
    Conjugated fatty acids (CFA) have received increased interest because of their beneficial effects on human health, including preventing cancer development. Conjugated linoleic acids (CLA) are such CFA, and have been reviewed extensively for their multiple biological activities. In contrast to other types of CFAs including CLA that are found at low concentrations (less than 1%) in natural products, conjugated linolenic acids (CLN) are the only CFAs that occur in higher quantities in natural products. Some plant seeds contain a considerably high concentration of CLN (30 to 70 wt% lipid). Our research group has screened CLN from different plant seed oils to determine their cancer chemopreventive ability. This review describes the physiological functions of CLN isomers that occur in certain plant seeds. CLN are able to induce apoptosis through decrease of Bcl-2 protein in certain human cancer cell lines, increase expression of peroxisome proliferator-activated receptor (PPAR)-γ, and up-regulate gene expression of p53. Findings in our preclinical animal studies have indicated that feeding with CLN resulted in inhibition of colorectal tumorigenesis through modulation of apoptosis and expression of PPARγ and p53. In this review, we summarize chemopreventive efficacy of CLN against cancer development, especially colorectal cancer

    Iron and risk of dementia: Mendelian randomisation analysis in UK Biobank

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordData availability statement: Results are available in a public, open access repository. Access to UK Biobank participant level data requires application. UKB data are available to any bone fide researcher following application (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). Summary statistics for these GWAS are available to download from FigShare (DOI 10.6084/m9.figshare.21828498).Background Brain iron deposition is common in dementia, but whether serum iron is a causal risk factor is unknown. We aimed to determine whether genetic predisposition to higher serum iron status biomarkers increased risk of dementia and atrophy of grey matter. Methods We analysed UK Biobank participants clustered into European (N=451284), African (N=7477) and South Asian (N=9570) groups by genetic similarity to the 1000 genomes project. Using Mendelian randomisation methods, we estimated the association between genetically predicted serum iron (transferrin saturation [TSAT] and ferritin), grey matter volume and genetic liability to clinically defined dementia (including Alzheimer’s disease [AD], non-AD dementia, and vascular dementia) from hospital and primary care records. We also performed time-to-event (competing risks) analysis of the TSAT polygenic score on risk of clinically defined non-AD dementia. Results In Europeans, higher genetically predicted TSAT increased genetic liability to dementia (Odds Ratio [OR]: 1.15, 95% Confidence Intervals [CI] 1.04 to 1.26, p=0.0051), non-AD dementia (OR: 1.27, 95% CI 1.12 to 1.45, p=0.00018) and vascular dementia (OR: 1.37, 95% CI 1.12 to 1.69, p=0.0023), but not AD (OR: 1.00, 95% CI 0.86 to 1.15, p=0.97). Higher TSAT was also associated with increased risk of non-AD dementia in participants of African, but not South Asian groups. In survival analysis using a TSAT polygenic score, the effect was independent of apolipoprotein-E ε4 genotype (with adjustment subdistribution Hazard Ratio: 1.74, 95% CI 1.33 to 2.28, p=0.00006). Genetically predicted TSAT was associated with lower grey matter volume in caudate, putamen and thalamus, and not in other areas of interest. Discussion Genetic evidence supports a causal relationship between higher TSAT and risk of clinically defined non-AD and vascular dementia, in European and African groups. This association appears to be independent of apolipoprotein-E ε4.National Institute for Health and Care Research (NIHR

    Protein Kinase C Activation Has Distinct Effects on the Localization, Phosphorylation and Detergent Solubility of the Claudin Protein Family in Tight and Leaky Epithelial Cells

    Get PDF
    We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier
    corecore